

# EPA Standard of Performance for New Residential Wood Heaters Certification Test Report

### Non-Confidential Business Information (Non-CBI)

| Manufacturer:<br>Heater Type:<br>Model: | Hearth & Home Technologies, LLC<br>Pellet-Fired, Freestanding<br>Classic Bay 1200-C          |
|-----------------------------------------|----------------------------------------------------------------------------------------------|
| Prepared for:                           | Hearth & Home Technologies, LLC<br>7521 215th Street W<br>Lakeville, MN 55044<br>USA         |
| Prepared by:                            | OMNI-Test Laboratories, Inc.<br>13327 NE Airport Way<br>Portland, OR 97230<br>(503) 643-3788 |
| Test Period:                            | October 30, 2018                                                                             |
| Report Date:<br>Report Revision Date:   | December 19, 2018<br>February 26, 2024                                                       |
| <b>Report Number:</b>                   | 0061PS013E                                                                                   |

All data and information contained in this report are confidential and proprietary to Hearth & Home Technologies. Its significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations, or surveys made. The contents of this report cannot be copied or quoted, except in full, without specific, written authorization from Hearth & Home Technologies and OMNI-Test Laboratories, Inc. No use of the OMNI-Test Laboratories, Inc. name, logo, or registered mark (O-TL) is permitted, except as expressly authorized by OMNI-Test Laboratories, Inc. in writing.

-Document Edition #005 (02/26/2024)-

### **AUTHORIZED SIGNATORIES**

This report has been reviewed and approved by the following authorized signatories:

**Evaluator:** 

Mon

Ken Morgan Technical Services Director

### **TABLE OF CONTENTS**PREFACE(3 pages)

| Section 1 – Appliance, Testing, & Results4                                                                                                                                                                                                                                |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1.1 Summary Tables       5         Table 1 – Particulate Emissions       5         Table 2 – Efficiency and CO       5         Table 3 – Test Facility Conditions       6         Table 4 – Heater Configuration       6         1.2 Procedures & Results Summary       7 |  |
| 1.3 Appliance Description                                                                                                                                                                                                                                                 |  |
| 2.1 Test Data by Run                                                                                                                                                                                                                                                      |  |
| Section 3 – Laboratory Quality Assurance                                                                                                                                                                                                                                  |  |
| <ul> <li>3.1 Quality Assurance/Quality Control</li></ul>                                                                                                                                                                                                                  |  |

| Appendix A – Labeling and Owner's manual                            |     |
|---------------------------------------------------------------------|-----|
| Appendix B – Dilution Tunnel Schematic                              |     |
| Appendix C – Corrected data (negative filter weights taken as zero) | 111 |
| Appendix D – Revision History                                       |     |

# **Section 1 Appliance, Testing, & Results**

- 1.1 Summary Tables1.2 Procedures and Results Summary1.3 Appliance Description

### 1.1 - Summary Tables

|                        | Parameter                     | One-Hour Filter | Integrated Total |
|------------------------|-------------------------------|-----------------|------------------|
| 1                      | Emission Rate<br>(g/hr)       | 1.30            | 1.00             |
| Uncorrected            | Emission Factor<br>(g/dry kg) | r 0.61 0.91     | 0.91             |
| <sup>2</sup> Corrected | Emission Rate<br>(g/hr)       | 1.30            | 1.03             |
| Corrected              | Emission Factor<br>(g/dry kg) | 0.61            | 0.94             |

### Table 1 – Particulate Emissions

<sup>1</sup>Uncorrected refers to gravimetric analysis that takes negative filter weights as a negative value in cases where filter residue was transferred to (stuck to) O-ring gaskets to account for the mass transfer.

<sup>2</sup>Corrected refers to gravimetric analysis where negative filter weights are taken as zero, thus reporting a higher value by overreporting of transferred filter material. The uncorrected values were added to this report in response to a request by the US EPA.

|                                   | Bu      | Integrated |         |        |
|-----------------------------------|---------|------------|---------|--------|
|                                   | Maximum | Medium     | Minimum | Total  |
| Time<br>(minutes)                 | 60      | 120        | 180     | 360    |
| <b>Burn Rate</b><br>(dry kg/hr)   | 2.13    | 1.00       | 0.825   | 1.10   |
| Heat Input Rate<br>(BTU/hr, HHV)  | 38,662  | 18,171     | 14,949  | 19,975 |
| Heat Output Rate<br>(BTU/hr, HHV) | 28,405  | 12,402     | 10,128  | 14,190 |
| Efficiency<br>(%, HHV)            | 73.5%   | 68.3%      | 67.7%   | 71.0%  |
| Efficiency<br>(%, LHV)            | 78.9%   | 73.3%      | 72.8%   | 76.3%  |
| CO Emission Rate<br>(g/min)       | 0.03    | 0.00       | 0.00    | 0.00   |

#### Table 2 – Efficiency and CO

OMNI-Test Laboratories, Inc.

### 1.1 - Summary Tables

|                                       | Initial | Middle | Final |
|---------------------------------------|---------|--------|-------|
| Room Temperature<br>(°F)              | 74      | 78     | 76    |
| <b>Barometric Pressure</b><br>(in Hg) | 28.68   | 28.65  | 28.62 |
| <b>Air Velocity</b><br>(ft/min)       | <50     | <50    | <50   |
| Induced Draft<br>(in H2O)             | Φ       | Φ      | Φ     |

### Table 3 – Test Facility Conditions

#### **Table 4 – Heater Configuration**

|                     | Destaut                                                                                                             | Burn Rate Segment                                                                                                   |                                                                                                                 |                                                                                                                      |  |
|---------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|
|                     | Pretest                                                                                                             | Maximum                                                                                                             | Medium                                                                                                          | Minimum                                                                                                              |  |
| Heat Output Setting | Heat<br>setting<br>on High,<br>FRAP set<br>to max,<br>Fan set<br>to high,<br>control<br>board set<br>to 2.<br>(max) | Heat<br>setting on<br>High, FRAP<br>set to<br>max, Fan<br>set to<br>high,<br>control<br>board set<br>to 2.<br>(max) | Heat setting<br>on low, FRAP<br>set to 3.0"<br>open, Fan set<br>to high,<br>control board<br>set to 1.<br>(med) | Heat<br>setting on<br>low, FRAP<br>set to full<br>closed, Fan<br>set to high,<br>control<br>board set<br>to 1. (min) |  |

### **1.2 - Procedures and Results Summary**

### **TESTING PROCEDURE**

The Classic Bay 1200-C was tested in accordance with the U.S. EPA 40 CFR Part 60, Subpart AAA – Standards of Performance for New Residential Wood Heaters using ASTM E2515 and ASTM E2779. The model was tested for thermal efficiency and carbon monoxide (CO) emissions in accordance with CSA B415.1-10. The fuel used for certification testing was Lignetics brand densified wood pellet fuel; this fuel was graded as Premium by the Pellet Fuels Institute and was produced at registered mill # 03208. Particulate emissions were measured using dual sampling trains consisting of two sets of filters (front and back).

A single test run was performed. The unit was installed and adjusted in accordance with the manufacturer's instructions.

The manufacturer's instructions specified leaving the fan on the maximum setting throughout the run and operating the preburn and high burn segments at maximum heat setting, the "FRAP" (feed rate adjustment plate), and the control board trim switch set to 2. The medium burn segment was operated at heat setting medium, FRAP set to 3" open, and the control board switch set to 1. The low burn segment at minimum heat setting, FRAP set to full closed, and the control board switch set to 1.

#### **RESULTS SUMMARY**

Proportionality results of the integrated test run, in addition to all other validity criteria, were within specified limits, and no sampling anomalies occurred. All burn rate categories were achieved. Therefore, this test run is considered valid and appropriate.

The Classic Bay 1200-C results indicate an average particulate emission rate of 1.00 g/hr. The results are within the emission limit of 2.0 g/hr for affected appliances manufactured on or after May 15, 2020.

The heater demonstrated an average thermal efficiency of 71.0%. The calculated CO emission rate was 0.00 g/min.

Upon completion of emissions certification testing, the sample unit was sealed and will be stored by the manufacturer in accordance with the requirements of the CFR.

### **1.3 - Appliance Description**

#### Appliance Manufacturer: Hearth & Home Technologies

#### Pellet Stove Model: Classic Bay 1200-C

**Type:** Freestanding, air-circulating type, pellet-fired room heater.

The Classic Bay 1200-C's principal elements include a fuel hopper, ductile Iron burn pot, and electrical fuel feed, combustion air, and convection air supply systems. The frame of the unit is constructed of mild steel, as is the outer fascia.

Combustion products are routed out of the firebox chamber via a baffle-type heat exchanger through a 3-inch diameter flue outlet located on the rear of the unit. A 3" to 6" vent pipe adaptor was used for testing; this adaptor is a factory supplied part and shown in the manual as an approved installation.

Fuel is supplied from the hopper to the burn pot via a screw-type auger, mounted diagnolly. Fuel supply rate is varied by cycling the auger motor as needed.

Ashes fall through the burn pot into a removable ash drawer located at the bottom of the unit. The drawer is accessed through a mild steel door, distinct from the cast aluminum front firebox door, which also features a 13.9 x 11.0" glass panel.

The electrical systems are regulated by two user-operated toggle switches, one for operation of the fan, and the other for the three heat settings. An adjustable slide plate (FRAP) is located in the hopper, this plate is used to restrict the number of pellets that can enter the auger from the hopper. An additional trim setting is located on the control board, this control is only intended to be manipulated by a dealer representative at the time of initial installation. It was used during testing to obtain data at maximum and minimum settings.

More detailed information is shown in the manufacturer's design drawings which are considered confidential business information (CBI) by the manufacturer and is not included in this non-CBI version of this report.



# Appliance Photographs Classic Bay 1200-C

**Test Date:** 8/30/2018





OMNI-Test Laboratories, Inc.

# Section 2 Test Data

2.1 Test Data by Run2.2 Sample Analysis & Tares

OMNI-Test Laboratories, Inc.



### Test Instruction Recommendations: Classic Bay 1200

<u>Created on/by</u>: 10/11/18; C. Winslow Howe – HHT Design Engineer

**<u>Purpose</u>**: To create repeatability in test protocol of the stove.

**Hopper Fuel:** Hopper of the unit should be loaded up with 1 bag of fuel (bag weighing 40lb)

Test Settings: Unit should be set up using a 6in flue, and 120 V wall outlet

<u>**High:</u>** Toggle switch set to high, FRAP rod pulled to full open and control board set to 2. To make sure board is set to 2 unplug and plug the power cord back into the unit. the control box should flash a blue light two times.</u>

<u>Medium</u>: Toggle switch set to low, FRAP rod set to medium marking and control board set to 1. To make sure board is set to 1 unplug and plug the power cord back into the unit. the control box should flash a blue light one time.

Low: Toggle switch set to low, FRAP rod set to low marking and control board set to 1.

### 2.1 - Test Data by Run

Run 1 Notes & Results

### ASTM E2779 / ASTM E2515 Emissions Results

| Manufacturer:<br>Model:                     | Hearth & Home<br>Classic Bay 1200-C |                     |
|---------------------------------------------|-------------------------------------|---------------------|
| Project No.:                                | 0061PS013E                          |                     |
| I racking No.:                              | 2325<br>1 T                         | ochnician Cignatura |
|                                             | I I<br>10/30/18                     |                     |
| Test Date.                                  | 10/ 50/ 10                          |                     |
| ntegrated Test Run                          |                                     |                     |
| Particulate Emission Rate                   | 1.00 g/hr                           |                     |
| Total Particulate Emissions - $E_T$         | 6.01 g                              |                     |
| Emissisons Factor                           | 0.91 g/kg                           |                     |
| CSA B415 Efficiency                         | 72.7% HHV                           |                     |
|                                             |                                     |                     |
|                                             | 1                                   |                     |
|                                             |                                     |                     |
| Particulate Emission Rate                   | 1.30 g/hr                           |                     |
| Total Particulate Emissions - $E_T$         | 1.30 g                              |                     |
| Emissisons Factor                           | 0.61 g/kg                           |                     |
|                                             |                                     |                     |
|                                             |                                     |                     |
|                                             |                                     |                     |
| Burn Rate (Composite)                       | 1.10 kg/hr dry                      |                     |
| Burn Rate (High)                            | 2.13 kg/hr dry                      |                     |
| Burn Rate (Medium)                          | 1.00 kg/hr dry                      | 47.0% Of High       |
| Burn Rate (Low)                             | 0.82 kg/hr dry                      | 38.7% Of High       |
|                                             |                                     |                     |
| Average Tunnel Temperature                  | 96 degrees F                        |                     |
| Avg.Velocity in Dilution Tunnel - $v_s$     | 27.42 ft/second                     |                     |
| Avg.Flow Rate in Dilution Tunnel - $Q_{sd}$ | 17238.7 dscf/hour                   |                     |
|                                             |                                     |                     |
| Average Δp                                  | 0.172 inches H2C                    | )                   |
| Average ΔH                                  | 1.98 inches H20                     | )                   |
| Total Time of Test                          | 360 minutes                         |                     |

File - Classsic Bay 1200-C Run 1 Corrected HHV, Tab - Emissions Results

### ASTM E2779 / ASTM E2515 Emissions Results

| Manufacturer: | Hearth & Home      |                       |
|---------------|--------------------|-----------------------|
| Model:        | Classic Bay 1200-C |                       |
| Project No.:  | 0061PS013E         |                       |
| Tracking No.: | 2325               |                       |
| Run:          | 1                  | Technician Signature: |
| Test Date:    | 10/30/18           |                       |

|                                              | 1 <sup>st</sup> Hour | Sample Train 1 | Sample Train 2 | Sample | Unit               |
|----------------------------------------------|----------------------|----------------|----------------|--------|--------------------|
|                                              |                      |                |                |        |                    |
| Total Sample Volume - V <sub>m</sub>         | 9.849                | 59.449         | 63.778         |        | ft                 |
| Average Gas Meter Temperature                | 75.95                | 75.95          | 75.35          |        | °F                 |
| Sample Volume (Std. Conditions) - $V_{mstd}$ | 9.307                | 56.175         | 59.333         |        | dsf <sup>3</sup>   |
|                                              |                      |                |                | N/A    |                    |
| Total Particulates - m <sub>n</sub>          | 0.7                  | 3.4            | 3.3            |        | mg                 |
| Particulate Concentration - $C_r/C_s$        | 7.522E-05            | 6.05E-05       | 5.56E-05       |        | g/dsf <sup>3</sup> |
| Total Particulate Emissions - $E_{T}$        | 1.30                 | 6.26           | 5.75           |        | g                  |
| Particulate Emission Rate                    | 1.30                 | 1.04           | 0.96           |        | g/hr               |
| Emissisons Factor                            | 0.61                 | 0.95           | 0.87           |        | g/kg               |
|                                              |                      |                |                |        |                    |
| Delta from Avg. Particulate Emissions        |                      | 0.25           | 0.25           |        | g                  |
|                                              |                      |                |                |        |                    |

| Quality Checks         |    |                             |                    |
|------------------------|----|-----------------------------|--------------------|
| Filter Temps < 90 °F   | ОК | Ambient Temp (55-90°F)      | ОК                 |
| Filter Face Velocity   | OK | Negative Probe Weight       | ОК                 |
| Leakage Rate           | OK | Pro-Rate Variation          | ОК                 |
| Medium Burn Rate < 50% | OK | Dual Train Comparison (% g/ | ′hr) 4 <b>.2</b> % |
|                        |    | Dual Train Comparison (g/kg | g) 0.25            |

### CSA B415.1 Results - Overall & By Category

| Manufacturer:              | Hearth &      | Home                  |         |
|----------------------------|---------------|-----------------------|---------|
| Model:                     | Classic Ba    | Classic Bay 1200-C    |         |
| Date:                      | 10/30/18      |                       |         |
| Test Results in Accordance | ce with CSA I | B415.1-09 - <b>Ov</b> | rerall  |
|                            | HHV Basis     | LHV Basis             |         |
| Overall Efficiency         | 72.7%         | 77.8%                 |         |
| Combustion Efficiency      | <b>99.</b> 5% | 99.5%                 |         |
| Heat Transfer Efficiency   | 73%           | 78.2%                 |         |
| Output Rate (kJ/h)         | 16,291        | 15,454                | (Btu/h) |
| Burn Rate (kg/h)           | 1.10          | 2.43                  | (lb/h)  |
| Input (kJ/h)               | 22,396        | 21,245                | (Btu/h) |
|                            |               |                       |         |
| Test Load Weight (dry kg)  | 6.61          | 14.57                 | dry lb  |
| MC wet (%)                 | 5.98          |                       |         |
| MC dry (%)                 | 6.36          |                       |         |
| Particulate (g )           | 6.01          |                       |         |
| CO (g)                     | 2             |                       |         |
| Test Duration (h)          | 6.00          |                       |         |
| Emissions                  | Particulate   | CO                    |         |
| g/MJ Output                | 0.06          | 0.02                  |         |
| g/kg Dry Fuel              | 0.91          | 0.27                  |         |
| g/h                        | 1.00          | 0.30                  |         |
| lb/MM Btu Output           | 0.14          | 0.04                  |         |
|                            |               |                       |         |
| Air/Fuel Ratio (A/F)       | 49.88         |                       |         |

| VERSION:                   | <u>2.2</u>   | <del>12/14/2009</del> |                   |
|----------------------------|--------------|-----------------------|-------------------|
| Air/Fuel Ratio (A/F)       | 50.13        |                       |                   |
|                            | -            | 0.00                  |                   |
| g/n                        | -            | 0.00                  |                   |
| g/kg Dry Fuel              | -            | 0.00                  |                   |
| g/mJ Output                | -            | 0.00                  |                   |
| Emissions                  | Particulate  | 0.00                  |                   |
| Finitesian                 | Deutieulete  | 60                    |                   |
| Test Duration (h)          | 2.00         |                       |                   |
| CO (g)                     | 0            |                       |                   |
| Particulate (g )           | -            |                       |                   |
| MC dry (%)                 | 6.36         |                       |                   |
| MC wet (%)                 | 5.98         |                       |                   |
| Test Load Weight (dry kg)  | 2.00         | 4.42                  | dry lb            |
| input (kJ/II)              | 20,373       | 19,320                | (BLU/II)          |
| Burn Rate (kg/h)           | 1.00         | 2.21                  | (ID/N)<br>(Rtu/b) |
| Output Rate (kJ/h)         | 14,286       | 13,552                | (Btu/h)           |
|                            | 70%          | 75.4%                 |                   |
| Host Transfor Efficiency   | 99.5%<br>70% | 75.4%                 |                   |
| Overall Efficiency         | 70.1%        | 99.3%                 |                   |
|                            |              |                       |                   |
|                            |              |                       |                   |
| Test Results in Accordance | e with CSA E | 3415.1-09 - <b>Me</b> | dium              |

| ERSION: | <del>2.2</del> | <del>12/14/2009</del> |
|---------|----------------|-----------------------|
|         |                |                       |

Control No. P-SFDK-0004, Effective Date 9/26/2018

| Kull.                      | I             |                    |         |  |  |  |
|----------------------------|---------------|--------------------|---------|--|--|--|
| Control #:                 | 0061PS013E    |                    |         |  |  |  |
| Test Duration:             | 360           |                    |         |  |  |  |
| Test Results in Accordance | e with CSA B4 | 15.1-09 - <b>M</b> | aximum  |  |  |  |
|                            | HHV Basis     | LHV Basis          |         |  |  |  |
| Overall Efficiency         | 75.0%         | 80.2%              |         |  |  |  |
| Combustion Efficiency      | 99.5%         | <b>99.5</b> %      |         |  |  |  |
| Heat Transfer Efficiency   | 75%           | 80.6%              |         |  |  |  |
| Output Rate (kJ/h)         | 32,522        | 30,851             | (Btu/h) |  |  |  |
| Burn Rate (kg/h)           | 2.13          | 4.70               | (lb/h)  |  |  |  |
| Input (kJ/h)               | 43,348        | 41,120             | (Btu/h) |  |  |  |
|                            |               |                    |         |  |  |  |
| Test Load Weight (dry kg)  | 2.13          | 4.70               | dry lb  |  |  |  |
| MC wet (%)                 | 5.98          |                    |         |  |  |  |
| MC dry (%)                 | 6.36          |                    |         |  |  |  |
| Particulate (g )           | 0.70          |                    |         |  |  |  |
| CO (g)                     | 2             |                    |         |  |  |  |
| Test Duration (h)          | 1.00          |                    |         |  |  |  |
| Emissions                  | Particulate   | CO                 |         |  |  |  |
| g/MJ Output                | 0.02          | 0.06               |         |  |  |  |
| g/kg Dry Fuel              | 0.33          | 0.84               |         |  |  |  |
| g/h                        | 0.70          | 1.80               |         |  |  |  |
| lb/MM Btu Output           | 0.05          | 0.13               |         |  |  |  |
| 1                          |               |                    |         |  |  |  |
| Air/Fuel Ratio (A/F)       | 25.90         |                    |         |  |  |  |

Dun: 1

| Test Results in Accordance | e with CSA B4 | 15.1-09 - <b>M</b> | inimum  |
|----------------------------|---------------|--------------------|---------|
|                            | HHV Basis     | LHV Basis          |         |
| Overall Efficiency         | 69.6%         | 99.5%              |         |
| Combustion Efficiency      | <b>99.5</b> % | 74.8%              |         |
| Heat Transfer Efficiency   | 70%           | 74.8%              |         |
| Output Rate (kJ/h)         | 11,674        | 11,074             | (Btu/h) |
| Burn Rate (kg/h)           | 0.82          | 1.82               | (lb/h)  |
| Input (kJ/h)               | 16,761        | 15,900             | (Btu/h) |
|                            |               |                    |         |
| Test Load Weight (dry kg)  | 2.47          | 5.45               | dry lb  |
| MC wet (%)                 | 5.98          |                    |         |
| MC dry (%)                 | 6.36          |                    |         |
| Particulate (g )           | -             |                    |         |
| CO (g)                     | 0             |                    |         |
| Test Duration (h)          | 3.00          |                    |         |
| Emissions                  | Particulate   | CO                 |         |
| g/MJ Output                | -             | 0.00               |         |
| g/kg Dry Fuel              | -             | 0.00               |         |
| g/h                        | -             | 0.00               |         |
| lb/MM Btu Output           | -             | 0.00               |         |
|                            |               |                    |         |
| Air/Fuel Ratio (A/F)       | 68.99         |                    |         |

#### Modified to fit this Format

File - Classsic Bay 1200-C Run 1 Corrected HHV, Tab - Integrated Report

### Pellet Heater Preburn Data - ASTM E2779

| Manufacturer: | Hearth & Home      |                     |        |
|---------------|--------------------|---------------------|--------|
| Model:        | Classic Bay 1200-C |                     |        |
| Tracking No.: | 2325               | PB Length:          | 70 min |
| Project No.:  | 0061PS013E         | Recording Interval: | 10 min |
| Test Date:    | ###########        |                     |        |
|               |                    |                     |        |

70

-0.04

279

Averages:

| Elapsed Time (min) | Scale Reading | Weight<br>Change | Stack (F) | Ambient (F) | Draft ("H2O) | CO2 (%) | CO (%) |
|--------------------|---------------|------------------|-----------|-------------|--------------|---------|--------|
| 0                  | 357.4         | -                | 249       | 68          | -0.04        |         |        |
| 10                 | 356.4         | -1               | 274       | 69          | -0.04        |         |        |
| 20                 | 355.6         | -0.8             | 281       | 70          | -0.04        |         |        |
| 30                 | 354.8         | -0.8             | 282       | 70          | -0.04        |         |        |
| 40                 | 353.9         | -0.9             | 285       | 71          | -0.04        |         |        |
| 50                 | 353.1         | -0.8             | 285       | 71          | -0.04        |         |        |
| 60                 | 352.2         | -0.9             | 286       | 71          | -0.04        |         |        |
| 70                 | 351.1         | -1.1             | 289       | 71          | -0.04        |         |        |
|                    |               |                  |           |             |              |         |        |
|                    |               |                  |           |             |              |         |        |

OMNI-Test Laboratories, Inc

#### Pellet Heater Test Data - ASTM E2779 / ASTM E2515

|         |                      | _                    |               |        |                     |         |                |                     |        |            |            |        | PM Contro   | l Modules:         | 371, 372 |                   |                    |              |                |               | _         |         |                     |                     |        |
|---------|----------------------|----------------------|---------------|--------|---------------------|---------|----------------|---------------------|--------|------------|------------|--------|-------------|--------------------|----------|-------------------|--------------------|--------------|----------------|---------------|-----------|---------|---------------------|---------------------|--------|
| Run:    | 1                    |                      |               |        |                     |         |                |                     |        |            |            | Dilut  | tion Tunnel | l MW(dry):         | 29.00    | lb/lb-mol         | e                  | Avg. Tunne   | el Velocity:   | 27.42         | ft/sec.   |         |                     |                     |        |
|         | Man                  | ufacturer:           | Hearth & Ho   | me     | _                   |         | High Burn E    | nd Time:            | 60     | _          |            | Dilu   | tion Tunne  | l MW(wet):         | 28.78    | lb/lb-mol         | e                  | Intial Tu    | Innel Flow:    | 276.6         | scfm      |         |                     |                     |        |
|         |                      | Model:               | Classic Bay 1 | 1200-C |                     | Me      | edium Burn E   | nd Time:            | 180    | -          |            |        | Dilution Tu | innel H2O:         | 2.00     | percent           |                    | Average Tu   | unnel Flow:    | 287.3         | scfm      |         |                     |                     |        |
|         | Tra                  | acking No.:          | 2325          |        | -                   | Т       | Fotal Samplin  | g Time:             | 360    | min        |            | D      | ilution Tun | nel Static:        | -1.130   | "H <sub>2</sub> O | Po                 | st-Test Leak | Check (1):     | 0.000         | cfm @     | 10      | in. Hg              |                     |        |
|         | Pr                   | oiect No.:           | 0061PS013E    |        | -                   |         | Recording In   | terval:             | 10     | min        |            |        | Tu          | nnel Area:         | 0.1964   | ft <sup>2</sup>   | Po                 | st-Test Leak | Check (2):     | 0.000         | cfm @     | 8       | in. Hø              |                     |        |
|         |                      | Test Date:           | 30-Oct-18     |        | -                   |         | ·····          |                     |        | -          |            |        | Pitot       | t Tube Cn.         | 0.99     | -                 |                    | Fuel M       | nisture (%).   | 6 360         | Dry Basis | 5 980   | Wet Basis           |                     |        |
|         | Beginning (          | lock Time:           | 10.29         |        | -                   | Backer  | round Sample   | Volume              | 0      | cubic feet |            |        | 1100        | c rube ep.         | 0.77     | -                 |                    | i act m      | Jistare (///). | 0.500         |           | 5.700   | free busis          |                     |        |
|         | beginning Ci         | lock fille.          | 10.29         |        | -                   | Dackgi  | ound sample    | votume.             |        | cubic feet |            |        | r           |                    |          |                   | Volocity           | Travorco Da  | ta             |               |           |         | 7                   |                     |        |
|         | Matan Da             |                      | 0.007         | (4)    | 0.004               | (2)     | 0              | (1                  |        |            |            |        |             | Dt 4               | Dt 0     | D4-2              | Velocity           |              | Ld Dt (        | Dt 7          | Dt 0      | Cantan  |                     |                     |        |
|         | weter bo             | ix i Factor:         | 0.997         | (1)    | 0.981               | (2)     | 0              | (AMD)               |        |            |            |        |             | Pt.1               | Pt.Z     | Pt.3              | Pt.4               | Pt.5         | Pt.6           | Pt.7          | Pt.8      | Center  |                     |                     |        |
|         |                      |                      |               |        |                     |         |                |                     |        |            |            |        | Initial dP  | 0.130              | 0.152    | 0.162             | 0.130              | 0.140        | 0.164          | 0.160         | 0.136     | 0.162   | "H2O                |                     |        |
|         | Barometri            | c Pressure:          | Begin         | Middle | End                 | Average | -              |                     |        |            |            |        | Temp:       | 104                | 104      | 104               | 104                | 105          | 105            | 105           | 105       | 104     | °F                  |                     |        |
|         |                      |                      | 28.68         | 28.65  | 28.62               | 28.65   | "Hg            |                     |        |            |            |        |             | V <sub>strav</sub> | 26.82    | ft/sec            | V <sub>scent</sub> | 28.20        | ft/sec         | Fp            | 0.951     |         |                     |                     |        |
|         | 1                    |                      |               |        |                     |         | -              |                     |        |            |            |        |             |                    |          | -                 |                    |              | •              |               |           | -       |                     |                     |        |
|         |                      |                      |               |        |                     |         | Particulate Sa | ampling D           | ata    |            |            | -      |             |                    | Fuel We  | ight (lb)         |                    |              | Temperatu      | ire Data (°F) | )         |         | St                  | ack Gas Da          | ita    |
| Elapsed | Cas Hotor            | Cas Hatar            | Sample        | Sample | Orifice             | Meter   | Meter          | Orifice             | Meter  | Meter      | Dilution   | Tunnel | Due Dete    | Due Dete           | Carla    | Mainha            |                    |              |                |               |           |         | Durft               |                     |        |
| Time    | Gas Meter            | Gas Meter            | Rate 1        | Rate 2 | dH 1                | Temp 1  | Vacuum 1       | dH 2                | Temp 2 | Vacuum 2   | Dilution   | Center | Pro. Rate   | Pro. Rate          | Scale    | Weight            | Stack              | Filter 1     | Dryer 1        | Filter 2      | Dryer 2   | Ambient | Uraft<br>("H_O)     | CO <sub>2</sub> (%) | CO (%) |
| (min)   | 1 (ft <sup>-</sup> ) | 2 (ft <sup>-</sup> ) | (cfm)         | (cfm)  | ("H <sub>2</sub> O) | (°F)    | ("Hg)          | ("H <sub>2</sub> O) | (°F)   | ("Hg)      | Tunnet (F) | dP     | 1           | 2                  | Reading  | Change            |                    |              |                |               |           |         | ( n <sub>2</sub> 0) |                     |        |
| 0       | 0.000                | 0.000                |               |        | 1.95                | 72      | 0.18           | 1.27                | 72     | -0.30      | 107        | 0.170  |             |                    | 15.5     |                   | 286                | 70           | 71             | 70            | 71        | 70      | -0.040              | 4.65                | 0.006  |
| 10      | 1 611                | 1 764                | 0.16          | 0.18   | 1 97                | 72      | -0.43          | 1.80                | 72     | -0.40      | 108        | 0.168  | 100         | 107                | 14 7     | -0.8              | 280                | 73           | 73             | 72            | 71        | 70      | -0.040              | 4.26                | 0.006  |
| 20      | 3 247                | 3 528                | 0.16          | 0.18   | 1.96                | 73      | -0.29          | 1 79                | 73     | -0.20      | 109        | 0.168  | 102         | 102                | 13.8     | -0.9              | 286                | 74           | 75             | 74            | 73        | 70      | -0.040              | 4.43                | 0.005  |
| 20      | 4.004                | 5.320                | 0.10          | 0.10   | 2.05                | 73      | -0.27          | 1.07                | 73     | -0.20      | 107        | 0.100  | 102         | 102                | 13.0     | -0.7              | 200                | 74           | 75             | 77            | 73        | 60      | -0.040              | 4.54                | 0.003  |
| 30      | 4.004                | 3.294                | 0.16          | 0.10   | 2.05                | 74      | -0.61          | 1.02                | 75     | -0.30      | 109        | 0.170  | 101         | 102                | 13.0     | -0.8              | 203                | 74           | 70             | 73            | 74        | 09      | -0.040              | 4.51                | 0.002  |
| 40      | 6.541                | 7.075                | 0.17          | 0.18   | 1.93                | /4      | -0.52          | 1.82                | /4     | -0.60      | 108        | 0.170  | 102         | 102                | 12.2     | -0.8              | 285                | 73           | 78             | 73            | /6        | 68      | -0.040              | 5.44                | 0.005  |
| 50      | 8.196                | 8.851                | 0.17          | 0.18   | 2.05                | 75      | -0.93          | 1.79                | 74     | -0.40      | 108        | 0.172  | 101         | 102                | 11.3     | -0.9              | 284                | 73           | 79             | 73            | 77        | 70      | -0.040              | 4.71                | 0.000  |
| 60      | 9.849                | 10.619               | 0.17          | 0.18   | 2.04                | 75      | -0.48          | 1.78                | 74     | -0.30      | 108        | 0.170  | 102         | 102                | 10.5     | -0.8              | 282                | 74           | 79             | 74            | 78        | 70      | -0.040              | 5.10                | 0.000  |
| 70      | 11.513               | 12.379               | 0.17          | 0.18   | 2.07                | 75      | -0.59          | 1.77                | 75     | -0.50      | 102        | 0.172  | 101         | 100                | 9.9      | -0.6              | 246                | 76           | 80             | 75            | 78        | 70      | -0.032              | 2.00                | 0.000  |
| 80      | 13.175               | 14.167               | 0.17          | 0.18   | 2.06                | 76      | -0.51          | 1.84                | 75     | -0.40      | 98         | 0.172  | 101         | 101                | 9.6      | -0.3              | 221                | 75           | 80             | 75            | 79        | 71      | -0.029              | 1.89                | 0.000  |
| 90      | 14.834               | 15.963               | 0.17          | 0.18   | 2.03                | 76      | -0.82          | 1.82                | 75     | -0.70      | 95         | 0.172  | 100         | 101                | 9.2      | -0.4              | 213                | 75           | 81             | 75            | 79        | 70      | -0.030              | 2.46                | 0.000  |
| 100     | 16.492               | 17.754               | 0.17          | 0.18   | 2.06                | 76      | -0.80          | 1.83                | 75     | -0.70      | 95         | 0.172  | 100         | 101                | 8.8      | -0.4              | 205                | 75           | 81             | 75            | 80        | 70      | -0.030              | 2.15                | 0.000  |
| 110     | 18.150               | 19.541               | 0.17          | 0.18   | 1.94                | 76      | -0.24          | 1.81                | 76     | -0.70      | 94         | 0.174  | 100         | 100                | 8.5      | -0.3              | 199                | 75           | 82             | 75            | 80        | 70      | -0.026              | 1.86                | 0.000  |
| 120     | 19.811               | 21.330               | 0.17          | 0.18   | 1.96                | 76      | -0.17          | 1.82                | 76     | -0.60      | 95         | 0.172  | 100         | 101                | 8.1      | -0.4              | 199                | 74           | 80             | 75            | 78        | 70      | -0.025              | 1.97                | 0.000  |
| 130     | 21,471               | 23,120               | 0.17          | 0.18   | 1.96                | 76      | -0.16          | 1.82                | 76     | -0.40      | 95         | 0.172  | 100         | 101                | 7.7      | -0.4              | 203                | 74           | 80             | 74            | 78        | 70      | -0.026              | 1.94                | 0.000  |
| 140     | 23,130               | 24,908               | 0.17          | 0.18   | 1.92                | 76      | -0.67          | 1.82                | 76     | -0.60      | 94         | 0.172  | 100         | 101                | 7.4      | -0.3              | 199                | 74           | 80             | 75            | 78        | 70      | -0.028              | 2.81                | 0.000  |
| 150     | 24 787               | 26 693               | 0.17          | 0.18   | 1.92                | 76      | -0.26          | 1.80                | 76     | -0.50      | 93         | 0 172  | 100         | 100                | 6.9      | -0.5              | 199                | 74           | 81             | 75            | 78        | 70      | -0.028              | 2 16                | 0.000  |
| 160     | 26 445               | 28 476               | 0.17          | 0.18   | 1.93                | 76      | -0.52          | 1.81                | 76     | -0.70      | 93         | 0.172  | 100         | 100                | 6.5      | -0.4              | 203                | 74           | 81             | 75            | 78        | 69      | -0.028              | 2.56                | 0.000  |
| 170     | 28 103               | 30.256               | 0.17          | 0.18   | 1.02                | 76      | -0.16          | 1 70                | 76     | -0.60      | 93         | 0.174  | 100         | 00                 | 6.1      | -0.4              | 107                | 74           | 81             | 75            | 78        | 70      | -0.027              | 2.50                | 0.000  |
| 190     | 20.103               | 22.026               | 0.17          | 0.10   | 2.02                | 76      | 0.10           | 1.77                | 76     | -0.00      | 02         | 0.174  | 00          | 00                 | 5.9      | -0.4              | 100                | 74           | 77             | 73            | 70        | 60      | 0.027               | 2.25                | 0.000  |
| 100     | 27.737               | 32.030               | 0.17          | 0.18   | 2.03                | 70      | -0.31          | 1.77                | 70     | -0.00      | 73         | 0.174  | 77          | 77                 | 5.0      | -0.3              | 177                | 74           | 77             | 74            | 75        | 70      | -0.027              | 2.03                | 0.000  |
| 190     | 31.415               | 33.812               | 0.17          | 0.18   | 2.03                | 70      | -0.91          | 1.79                | 70     | -0.60      | 93         | 0.174  | 99          | 99                 | 5.5      | -0.3              | 197                | 74           | 75             | 75            | /3        | 70      | -0.024              | 1.00                | 0.000  |
| 200     | 33.008               | 30.000               | 0.17          | 0.18   | 1.99                | 77      | -0.87          | 1.70                | /0     | -0.70      | 93         | 0.172  | 100         | 100                | 0.1      | -0.4              | 193                | 74           | /5             | /5            | /3        | 71      | -0.025              | 2.02                | 0.000  |
| 210     | 34.720               | 37.357               | 0.17          | 0.18   | 2.02                |         | -0.84          | 1.78                | /6     | -0.40      | 92         | 0.172  | 99          | 99                 | 4.8      | -0.3              | 189                | /4           | /4             | /5            | /5        | /1      | -0.025              | 1.85                | 0.000  |
| 220     | 36.372               | 39.127               | 0.1/          | 0.18   | 2.03                | //      | -0.46          | 1.78                | /6     | -0.60      | 91         | 0.1/2  | 99          | 99                 | 4.4      | -0.4              | 189                | /4           | /4             | /5            | /5        | /0      | -0.025              | 1.94                | 0.000  |
| 230     | 38.024               | 40.895               | 0.17          | 0.18   | 2.01                | 77      | -0.54          | 1.77                | 76     | -0.40      | 91         | 0.172  | 99          | 99                 | 4.1      | -0.3              | 185                | 74           | 74             | 75            | 75        | 70      | -0.025              | 1.49                | 0.000  |
| 240     | 39.676               | 42.662               | 0.17          | 0.18   | 2.02                | 77      | -0.80          | 1.76                | 76     | -0.40      | 91         | 0.172  | 99          | 99                 | 3.8      | -0.3              | 184                | 74           | 74             | 75            | 75        | 70      | -0.024              | 1.78                | 0.000  |
| 250     | 41.326               | 44.429               | 0.17          | 0.18   | 2.02                | 77      | -0.73          | 1.77                | 76     | -0.60      | 92         | 0.172  | 99          | 99                 | 3.5      | -0.3              | 186                | 74           | 74             | 74            | 76        | 70      | -0.025              | 1.84                | 0.000  |
| 260     | 42.978               | 46.195               | 0.17          | 0.18   | 2.01                | 77      | -0.79          | 1.77                | 76     | -0.50      | 91         | 0.172  | 99          | 99                 | 3.1      | -0.4              | 181                | 73           | 74             | 74            | 76        | 70      | -0.025              | 1.66                | 0.000  |
| 270     | 44.628               | 47.961               | 0.17          | 0.18   | 2.01                | 77      | -0.88          | 1.77                | 76     | -0.40      | 90         | 0.172  | 99          | 99                 | 2.8      | -0.3              | 181                | 73           | 75             | 74            | 76        | 70      | -0.025              | 1.70                | 0.000  |
| 280     | 46.277               | 49.723               | 0.16          | 0.18   | 1.99                | 77      | -0.92          | 1.77                | 76     | -0.50      | 90         | 0.170  | 100         | 99                 | 2.5      | -0.3              | 180                | 73           | 75             | 74            | 77        | 70      | -0.025              | 1.84                | 0.000  |
| 290     | 47.926               | 51.485               | 0.16          | 0.18   | 1.89                | 77      | -0.68          | 1.76                | 76     | -0.50      | 90         | 0.172  | 99          | 99                 | 2.2      | -0.3              | 176                | 73           | 75             | 74            | 77        | 70      | -0.023              | 1.36                | 0.000  |
| 300     | 49.572               | 53.245               | 0.16          | 0.18   | 1.88                | 77      | -0.16          | 1.76                | 76     | -0.60      | 90         | 0.172  | 99          | 99                 | 2.0      | -0.2              | 178                | 73           | 75             | 74            | 77        | 70      | -0.025              | 2.00                | 0.000  |
| 310     | 51 220               | 55 004               | 0.16          | 0.18   | 1.86                | 77      | -0.23          | 1.76                | 76     | -0.70      | 90         | 0.172  | 99          | 99                 | 1.7      | -0.3              | 182                | 73           | 75             | 74            | 77        | 70      | -0.025              | 1.67                | 0.000  |
| 320     | 52 867               | 56 761               | 0.16          | 0.18   | 1.86                | 77      | -0.34          | 1.75                | 76     | -0.70      | 91         | 0.172  | 99          | 99                 | 1.7      | -0.4              | 183                | 73           | 75             | 74            | 77        | 70      | -0.026              | 1.07                | 0.000  |
| 220     | 54 512               | 58 517               | 0.10          | 0.10   | 1.00                | 77      | -0.54          | 1.75                | 76     | -0.70      | 01         | 0.172  | 00          | 00                 | 0.0      | -0.4              | 194                | 73           | 75             | 77            | 77        | 40      | -0.020              | 1.07                | 0.000  |
| 330     | 54.51Z               | 30.317               | 0.10          | 0.10   | 1.97                | 77      | -0.00          | 1.70                | 70     | -0.00      | 71         | 0.172  | 99<br>00    | 77                 | 0.9      | -0.4              | 104                | 73           | 73             | 73            | 77        | 70      | -0.025              | 1.02                | 0.000  |
| 340     | 20.159               | 00.2/3               | 0.16          | 0.18   | 1.93                | //      | -0.35          | 1.75                | /6     | -0.70      | 90         | 0.172  | 99          | 98                 | 0.7      | -0.2              | 181                | /3           | /6             | /3            | //        | /0      | -0.025              | 1.53                | 0.000  |
| 350     | 57.805               | 62.027               | 0.16          | 0.18   | 1.92                | 11      | -0.83          | 1./4                | /6     | -0.50      | 91         | 0.1/2  | 99          | 98                 | 0.3      | -0.4              | 180                | /3           | /6             | /3            | //        | 69      | -0.025              | 1.60                | 0.000  |
| 360     | 59.449               | 63.778               | 0.16          | 0.18   | 1.97                | 76      | -0.71          | 1.74                | 76     | -0.60      | 90         | 0.172  | 99          | 98                 | 0.0      | -0.3              | 183                | 73           | 76             | 73            | 78        | 70      | -0.024              | 1.73                | 0.000  |
| Avg/Tot | 59.449               | 63.778               | 0.17          | 0.18   | 1.98                | 76      | -0.55          | 1.77                | 75     | -0.53      | 96         | 0.17   | 100         | 100                |          | ł                 | 210                | 74           | 77             | 74            | 77        | 70      | -0.029              | 2.46                | 0.001  |

Bull 2.

### Pellet Heater Lab Data - ASTM E2779 / ASTM E2515

| Manufacturer: | Hearth & Home Equipment Numbers: |
|---------------|----------------------------------|
| Model:        | Classic Bay 1200-C               |
| Tracking No.: | 2325                             |
| Project No.:  | 0061PS013E                       |
| Run #:        | 1 Technician Signature: B        |
| Date:         | 10/30/18                         |

#### TRAIN 1 (First Hour emissions)

| Sample Component       | Reagent | Filter, Probe                       |          |           |                 |
|------------------------|---------|-------------------------------------|----------|-----------|-----------------|
|                        |         | or Seal #                           | Tare, mg | Final, mg | Particulate, mg |
| A. Front filter catch  | Filter  | D573                                | 113.8    | 114.5     | 0.7             |
| B. Rear filter catch   | Filter  |                                     |          |           | 0.0             |
| C. Probe catch*        | Probe   |                                     |          | 0.0       |                 |
| D. Filter seals catch* | Seals   |                                     |          | 0.0       |                 |
|                        |         | 1 <sup>st</sup> hour Sub-Total, mg: |          |           | 0.7             |

#### TRAIN 1 (Remainder of Test)

| Sample Component       | Reagent | Filter, Probe              |          |                 |      |  |
|------------------------|---------|----------------------------|----------|-----------------|------|--|
|                        |         | or Seal #                  | Tare, mg | Particulate, mg |      |  |
| A. Front filter catch  | Filter  | D577                       | 120.1    | 122.1           | 2.0  |  |
| B. Rear filter catch   | Filter  | D574                       | 111.9    | 111.7           | -0.2 |  |
| C. Probe catch*        | Probe   | 2                          | 115015.5 | 115015.6        | 0.1  |  |
| D. Filter seals catch* | Seals   | R669                       | 3516.3   | 3516.3 3517.1   |      |  |
|                        |         |                            | 2.7      |                 |      |  |
|                        |         | Train 1 Aggregate, mg: 3.4 |          |                 |      |  |

#### TRAIN 2

| Sample Component       | Reagent | Filter, Probe |          |                 |     |
|------------------------|---------|---------------|----------|-----------------|-----|
|                        |         | or Seal #     | Tare, mg | Particulate, mg |     |
| A. Front filter catch  | Filter  | D575          | 113.5    | 116.3           | 2.8 |
| B. Rear filter catch   | Filter  | D576          | 120.3    | 120.3           | 0.0 |
| C. Probe catch*        | Probe   | OES3          | 114768.8 | 0.0             |     |
| D. Filter seals catch* | Seals   | R670          | 3573.2   | 0.5             |     |
|                        |         |               | 3.3      |                 |     |

#### AMBIENT

| Sample Component       | Reagent | Filter, Probe |                            |           |                 |  |
|------------------------|---------|---------------|----------------------------|-----------|-----------------|--|
|                        |         | or Seal #     | Tare, mg                   | Final, mg | Particulate, mg |  |
| A. Front filter catch* | Filter  |               |                            |           | 0.0             |  |
|                        |         |               | Ambient Aggregate, mg: 0.0 |           |                 |  |

\*Particulate catch that results in a negative number, is assumed to be zero for probes and seals, negative numbers for filters are assumed to be included in O-ring seal weights.

| OMNI-Test Laboratories, Inc.     | Pellet Heater Certification Run Sheets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client: <u>Hearth &amp; Home</u> | _Project Number: <u>0061PS013E</u> Run Number: /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Model: <u>Classic Bay</u>        | _Tracking Number: 2325 Date: |
| Test Crew: DUAUS                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OMNI Equipment ID numbers:       | 132, 2834, 371, 372, 410, 420, 559, 592, 637, 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

#### ASTM E2515 Sampling Information

| Test Location: HIT Colu, 11e                 | Clock Time @ ET=0: | 10:29        |
|----------------------------------------------|--------------------|--------------|
| Span Gas Concentrations: <u>CO2(%): 9-99</u> | <b>CO(%):</b> / 00 | CO(ppm): N/A |
| Test Run Validation Checks                   | Pre Test           | Post Test    |
| Zero Stack Gas Leakage                       | 900 d              | gard         |
| Zero Pitot Line Leakage                      | grud               | Jour de      |
| Zero Induced Draft                           | 0.0                | 0-           |
| 100% Smoke Capture                           | 100 %              |              |

| <b>Test Run Validation Measurements</b> | Pre Test |       | Post Test |       |
|-----------------------------------------|----------|-------|-----------|-------|
| Scale Audit (lbs)                       | 10.0     |       | 10.0      |       |
| CO2% (Zero/Span)                        | 0.00     | 10.00 | 0.04      | 9-99  |
| CO % (Zero/Span)                        | 0.000    | 1.000 | -0.010    | 0.989 |
| CO ppm (Zero/Span)                      | N/A      |       |           |       |
| Sample A Leakage (cfm @"Hg)             | N/A      |       | 0.0 @     | 2 10  |
| Sample B Leakage (cfm @"Hg)             | NA       |       | 0.0 @     | 2 8-  |
| Room Air Velocity (ft/min)              | L 50     |       | 450       | 9     |
| Barometric Pressure ("Hg)               | 28.68    |       | 28.6      | 2     |
| Relative Humidity (%)                   | 48%      |       | 46        | %     |
| Tunnel Static ("H <sub>2</sub> O)       | -1.13    |       | - /.      | . 13  |

#### Last Cleaning Dates

| Flue Pipe       | 10/25/18 |
|-----------------|----------|
| Dilution Tunnel | 10/25/18 |
| Sample Dryers   | 10/23/18 |

\_\_\_\_\_

#### **Dilution Tunnel Traverse**

| Traverse Point         | 1    | 2    | Center | 3    | 4    | 5    | 6    | 7    | 8    |
|------------------------|------|------|--------|------|------|------|------|------|------|
| Δp ("H <sub>2</sub> O) | ,130 | .152 | .162   | .162 | .130 | ,140 | .164 | .160 | ,136 |
| T (°F)                 | 104  | 104  | 104    | 104  | 105  | 105  | 105  | 105  | 105  |

Technician Signature:

Date: 11/15/18

| OMNI-Test Laboratories,       | Inc. Pellet Heater Certification Run Sheets                   |                             |
|-------------------------------|---------------------------------------------------------------|-----------------------------|
| Client: <u>Hearth &amp; F</u> | lomeProject Number: 0061PS013ERun Number:/                    |                             |
| Model: <u>Classic Bay</u>     | Tracking Number: 2325                                         | Date:_/ <u>0/30/18</u>      |
| Test Crew: 87                 | Auis                                                          | · ·                         |
| OMNI Equipment                | ID numbers: 132, 283A, 371, 372, 410, 420, 559, 592, 637, 650 |                             |
|                               | ASTM E2779 Run Notes                                          |                             |
| Air Control Se                | ettings                                                       |                             |
| High Burn Rate                | Target: <u>100%</u>                                           | Additional Cattering        |
| Settings:                     | Heat so Hing on High FAN set to High FRAP Rod ful             | Additional Settings         |
| 0                             | France 4.3" Full one                                          | Thoses.                     |
|                               |                                                               |                             |
|                               |                                                               | medium- Control box selling |
| Medium Burn Ba                | te Target: <50%                                               | a half or setting           |
| Sottings:                     | Heat Satting a low East chan Heat East Red                    | Low - Coursel of our of     |
| Settings.                     | France 2 city                                                 |                             |
|                               | <u>rrap: S.O</u>                                              |                             |
|                               |                                                               |                             |
| Laur Dum Data 7               | Fanancia Minimum                                              |                             |
| Low burn Rate                 | arget. <u>Plinimum</u>                                        |                             |
| Settings:                     | MCAN Selling U- LOW, MAY SELOW High Frap Lod ful              | ly clasec.                  |
|                               | Frap = 2.7 "                                                  |                             |
|                               |                                                               |                             |
|                               |                                                               |                             |
| Pellet Moisture (             | Content:                                                      | ,                           |
| Pellet Specification          | ons:                                                          |                             |
| Pellet Analysis N             | otes:                                                         |                             |

#### **Preburn Notes**

| Time | Notes                                                     |  |
|------|-----------------------------------------------------------|--|
| Ø    | FRAP Rod fully open. Heat setting on High, FAN soft High. |  |

#### Test Notes

| Time | Notes                                |
|------|--------------------------------------|
| 60   | Changed Front Filter in train A      |
| 61   | Changed Heck setting for medium Burn |
| 180  | changed Heck setting for Low Burn    |

Technician Signature:

Date:\_///19/18\_\_\_\_\_

### Pellet Heater Conditioning Data - ASTM E2779

| Manufacturer:       | Hearth & Home      |
|---------------------|--------------------|
| Model:              | Classic Bay 1200-C |
| Tracking No.:       | 2325               |
| Project No.:        | 0061PS013E         |
| Test Date:          | 8/27 - 10/11/2018  |
| Operation Category: | Medium             |

| Elapsed Time<br>(hours) | Fuel Added (lbs) | Stack (°F) |
|-------------------------|------------------|------------|
| 0                       | 88.0             | 293        |
| 1                       | 83.8             | 298        |
| 2                       | 81.6             | 220        |
| 3                       | 79.5             | 220        |
| 4                       | 78.0             | 176        |
| 5                       | 76.7             | 177        |
| 6                       | 75.2             | 181        |
| 7                       | 88.0             | 293        |
| 8                       | 83.8             | 298        |
| 9                       | 81.6             | 220        |
| 10                      | 79.5             | 220        |
| 11                      | 78.0             | 176        |
| 12                      | 76.7             | 177        |
| 13                      | 75.2             | 181        |
| 14                      | 78.6             | 293        |
| 15                      | 74.3             | 300        |
| 16                      | 71.9             | 225        |
| 17                      | 69.6             | 225        |
| 18                      | 68.1             | 177        |
| 19                      | 66.7             | 180        |
| 20                      | 66.0             | 93         |
| 21                      | 88.5             | 304        |
| 22                      | 84.0             | 311        |
| 23                      | 81.3             | 239        |
| 24                      | 78.9             | 231        |
| 25                      | 76.9             | 211        |
| 26                      | 74.9             | 209        |
| 27                      | 72.9             | 211        |
| 28                      | 71.0             | 214        |
| 29                      | 69.1             | 208        |

Control No. P-SFDK-0004, Effective Date 9/26/2018

### Pellet Heater Conditioning Data - ASTM E2779

| Manufacturer:       | Hearth & Home      |
|---------------------|--------------------|
| Model:              | Classic Bay 1200-C |
| Tracking No.:       | 2325               |
| Project No.:        | 0061PS013E         |
| Test Date:          | 8/27 - 10/11/2018  |
| Operation Category: | Medium             |

| Elapsed Time<br>(hours) | Fuel Added (Ibs) | Stack (°F) |
|-------------------------|------------------|------------|
| 30                      | 67.3             | 208        |
| 31                      | 65.4             | 202        |
| 32                      | 63.6             | 203        |
| 33                      | 61.7             | 200        |
| 34                      | 95.3             | 309        |
| 35                      | 90.7             | 314        |
| 36                      | 87.9             | 234        |
| 37                      | 85.2             | 237        |
| 38                      | 83.1             | 200        |
| 39                      | 81.2             | 208        |
| 40                      | 79.2             | 215        |
| 41                      | 79.0             | 91         |
| 42                      | 78.9             | 90         |
| 43                      | 79.0             | 88         |
| 44                      | 79.0             | 84         |
| 45                      | 79.0             | 80         |
| 46                      | 79.1             | 77         |
| 47                      | 73.0             | 311        |
| 48                      | 68.1             | 318        |
| 49                      | 65.2             | 235        |
| 50                      | 62.7             | 240        |

### 2.2 - Sample Analysis & Tares

Analysis Worksheets Tared Filter, Probe, and O-Ring Data Pellet Fuel Label Pellet Fuel Analysis Report OMNI-Test Laboratories, Inc.

#### **Pellet Heater Certification Run Sheets**

Client: <u>Hearth & Home</u> Model: <u>Classic Bay</u>

ne\_\_\_\_\_Project Number: <u>0061PS013E</u>Run Number: <u>/</u>\_\_\_\_\_ \_\_\_\_\_Tracking Number: <u>2325</u>\_\_\_\_\_

\_\_\_\_\_Date:\_\_/0/30/18

Test Crew: B DAUNS

OMNI Equipment ID numbers: 637, 592, 283A

| Assem  | bled By:                       |            |           | Weighing<br>#I | Weighing<br>#2 | Weighing<br>#3 | Weighing<br>#4 |
|--------|--------------------------------|------------|-----------|----------------|----------------|----------------|----------------|
|        | -                              |            |           | Date:          | Date:          | Date:          | Date:          |
| 7      | B DAU                          | S          |           | 11/6/18        | 11/9/18        | 11/12/18       | 11/13/18       |
|        |                                |            |           | Time:          | Time:          | Time:          | Time:          |
|        |                                |            |           | 0150           | 0958           | 0850           | 0724           |
|        |                                |            |           | R/H %:         | R/H %:         | R/H %:         | R/H %:         |
|        |                                |            |           | 16.8           | 6.9            | 5.2            | 7.4            |
|        |                                |            |           | Temp (F):      | Temp (F):      | Temp (F):      | Temp (F):      |
| Date/T | ime in D                       | esiccator: |           | 71.1           | 698            | 177            | 68.3           |
|        |                                |            |           | Audit I:       | Audit I:       | Audit I:       | Audit I:       |
| 11/    | Islix                          | 111.05     |           | 200.1          | 2011           | 2001           | 2001           |
| /      |                                | <u></u>    |           | Audit 2:       | Audit 2:       | Audit 2:       | Audit 2:       |
|        |                                |            |           | SUDAD          | SODALA         | 50001          | 50000          |
|        |                                |            |           | Audit 3:       | Audit 3:       | Audit 3:       | Audit 3:       |
|        |                                |            |           | 9999928        | 999961         | 999979         | 999921         |
|        |                                |            |           | Initials:      | Initials:      | Initials:      | Initials:      |
|        |                                |            |           | Br             | pn             | Br             | <u>AL</u>      |
|        | _                              |            |           | Weight         | Weight         | Weight         | Weight         |
| Train  | ltem                           | ID #       | Tare (mg) | (mg)           | (mg)           | (mg)           | (mg)           |
|        | Front                          |            |           |                |                | (8/            |                |
| A      | Filter<br>(60 min)             | 7573       | 113.8     | 114.6          | 114.5          | -              |                |
| A      | Front<br>Filter<br>(Remainder) | D577       | 120.1     | 1220           | 122.1          | -              |                |
| A      | Rear<br>Filter                 | D574       | 111.9     | 111.7          | 111.7          | -              |                |
| А      | Probe                          | 2          | 115015.5  | 115015.4       | 115015.6       | 1              |                |
| A      | O-Ring<br>Set                  | R669       | 3516.3    | 35180          | 3517.3         | 3517.1         | -              |
| В      | Front<br>Filter                | D575       | 113.5     | 116.3          | 116.3          |                |                |
| В      | Rear<br>Filter                 | D576       | 120.3     | 120.4          | 120.3          | -              |                |
| В      | Probe                          | Ofs 3      | 114768.8  | 114768.6       | 1147689        | 114768.8       |                |
| В      | O-Ring<br>Set                  | R670       | 3573.2    | 3575.0         | 3574.0         | 3573.7         | 3573.7         |
| BG     | Filter                         |            |           |                |                | <b></b>        |                |

#### ASTM E2515 Lab Sheet

Technician Signature:

Date: 11/19/18

| $\left( \begin{array}{c} \end{array} \right)$ |                            |                               | , Aug. *               |                       |                    |                                       | Ì            |
|-----------------------------------------------|----------------------------|-------------------------------|------------------------|-----------------------|--------------------|---------------------------------------|--------------|
| Tare Sheet: (ch                               | eck one) Prob              | es 47mr                       | m Filters              | 100mm Filters         | O-Ring             | Pair                                  |              |
| Prepared By: BI                               | DAVIS                      | Balance ID #:0mwi-0063        | ➔ Thermohygror         | meter ID #: 0mni-as92 | Audit Weight ID #/ | Mass: Omwi. 283A /10                  | by           |
| Placed in                                     | Date: 10/1/2018            | Date: <u>/0/19/18</u>         | Date: 10/22/17         | Date: 10/31/18        |                    |                                       |              |
| Dessicator:                                   | Time: <u>10:30 am</u>      | Time: <u>08cc</u>             | Time: <u>0836</u>      | Time: <u>1000</u>     |                    |                                       |              |
| Date: <u>9/27//8</u>                          | RH %: <u>18.9</u>          | RH %: <u>17.9</u>             | RH %:/ <del>Y. Z</del> | RH %: <u>ις.ς</u>     | Date Used          | Project Number                        | Run No.      |
| Time: <u>/0: 05</u>                           | т (°F): <u>73.0</u>        | т (°F): <u>716</u>            | т (°F): <i>7а 7</i>    | т (°F): <u>72,6</u>   |                    |                                       |              |
| ID #                                          | Audit: <u>09997.9</u>      | Audit: <u><b>1999 7.9</b></u> | Audit: <u>79977. 7</u> | Audit: <u>500-0</u>   |                    |                                       |              |
| 2                                             | IS015.8                    | 115015.3                      | 115015.5               | -                     | 10/30/18           | 0061 PS013 E                          | \$           |
| OES 3                                         | 114768.8                   | 114768 8 .                    |                        |                       | 1, 1,              | 4                                     | l            |
| OES Y                                         | 114145.7                   | 114145.6                      | -                      |                       | ulsur              |                                       | 6            |
| 3                                             | 116010.0                   | 116009.8                      | -                      |                       |                    |                                       |              |
| 4                                             | 114 858,9                  | 114 858.8                     | -                      | · ·                   |                    |                                       |              |
| OES 5                                         | 113572.5                   | 1135723                       |                        |                       |                    |                                       |              |
| DES 6                                         | 113710.9                   | 113710.7                      | 113710.5               | -                     |                    |                                       |              |
| 6                                             | 115350.2                   | 115 34 9 7                    | 115 350.0              | 11 5349.8             |                    |                                       | 24 J. 302 M. |
| 7                                             | 114982.1                   | 114981.9                      | -                      |                       | 11/5/18            |                                       | 8            |
| 8                                             | 115594.5                   | 115593.9                      | 115594.2               | 115594.0 -            |                    | 1                                     | J            |
| 9                                             | 115692.9                   | 115 692.5                     | 115692.7               | •                     | 10/20/18           |                                       | L L          |
| <u> </u>                                      | 114187.7                   | 114187.4                      | 114187.5               | -                     | 1                  |                                       |              |
| 12                                            | 114285.6                   | 114285.4                      | -                      |                       | 10/30/18           | •                                     | l            |
| 13                                            | 14322.6                    | 114 322.5                     |                        |                       | $\mathcal{L}$      |                                       |              |
| 14                                            | 114548.8                   | 114548.7                      | -                      |                       | 10/31/18           |                                       | 2            |
| 15                                            | 114342.2                   | 114341.8                      | 114342.2               | (14342.0 -            | L L                |                                       | 1            |
| 16                                            | 114266.6                   | 114266.3                      | 114266.6               | 14266.4 -             | 11/1/18            |                                       | 3            |
| 17                                            | 1 14560.5                  | 114 560. 3                    | 4                      |                       | , <b>T</b>         | •                                     | <b>7</b>     |
| 18                                            | 114402.2                   | 114402.1                      | -                      |                       | 11/2/18            |                                       | 4            |
| 20                                            | 14253.4                    | 114253.0                      | 114253-0               | <u>/</u>              |                    |                                       |              |
|                                               | Initials: ML               | Initials: DO2                 | Initials: BA           | Initials: AU          |                    | · · · · · · · · · · · · · · · · · · · |              |
| Final Technician Sig                          | nature: Ant                |                               | Date: (0/3)            | 118                   | -<br>Fvaluator     | signature:                            |              |
| Control No. P-SFDP                            | -0002.xls, Effective date: | 2/1/2017                      |                        | •                     | 2101000            |                                       | <b>`</b> .   |

26

. /

•

| Tare Sheet: (ch                                  | eck one) Prob                                                                                                        | 0es 47mi                                                         | n Filters                                                       | 100mm Filters                 | O-Ring                | Pair /             | )                                           |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------|-----------------------|--------------------|---------------------------------------------|
| Prepared By: 3                                   | Davis                                                                                                                | Balance ID #:0063                                                | 7 Thermohygr                                                    | ometer ID #: On vi- 0592      | Audit Weight ID #/    | Mass: 0m100283A 13 | 9                                           |
| Placed in<br>Dessicator:<br>Date: <u>Sout</u> (V | Date: <u> 6/(1/2018</u><br>Time: <u>4:00</u><br>RH %: <u>14 . 4 %</u>                                                | Date: <u>10/19/18</u><br>Time: <u>08cy</u><br>RH %: <u>17. 9</u> | Date: <u>//////8</u><br>Time: <u>/836</u><br>RH %: <u>/4.7-</u> | _ Date:<br>_ Time:<br>_ RH %: | Date Used             | Project Number     | Run No.                                     |
| ID #                                             | T (°F): <u>74.4</u><br>Audit: <u>500.2</u>                                                                           | T (°F): <u>71.6</u><br>Audit: <u>500.1</u>                       | T (°F): <u>70. 7</u><br>Audit: <u>504</u> /                     | _                             |                       |                    |                                             |
| R669                                             | 3516.5                                                                                                               | 3516.1                                                           | 35163                                                           | r                             | + 11 C/14 16/30/1X    | 6061 PSO 13E       | 141                                         |
| R670                                             | 3573.5                                                                                                               | 3573.0                                                           | 3573.2                                                          | 4                             | 1                     | J J                |                                             |
| R671                                             | 33510.3<br>3356.0mL                                                                                                  | 3509.8                                                           | 3510.2                                                          |                               | 11/5/18               |                    | (                                           |
| R672                                             | 3545.3                                                                                                               | 3545.1                                                           |                                                                 |                               | 1                     |                    | Ĵ                                           |
| R 673                                            | 3556.2                                                                                                               | 3555.7                                                           | 3 555. 9                                                        | .—                            | 11/2/18               |                    | 4                                           |
| R674                                             | 3534.4                                                                                                               | 3534.0                                                           | 3534.2                                                          | L.                            | l l                   | · .                | 1                                           |
| R675                                             | 3552.6                                                                                                               | 3552.2                                                           | 3552.3                                                          | -                             | 11/5/18               | N 14               | 5                                           |
| 2676                                             | 3588.6                                                                                                               | 3588.4                                                           | -                                                               |                               | What &                |                    |                                             |
| R6775                                            | 3552.7                                                                                                               | 3552.3                                                           | 3552.4                                                          | +                             | 10/29/18              |                    | 1                                           |
| R678                                             | 3356.0                                                                                                               | 3355.8                                                           | 1                                                               |                               | A7 10/20/18           |                    | 1                                           |
| R679                                             | 3313.8                                                                                                               | 3313.4                                                           | 3313.6                                                          |                               | Ichanles              |                    | l (                                         |
| R680                                             | 40893                                                                                                                | 4089.0                                                           | 4088.9                                                          |                               | 1                     |                    | $l^{2}$                                     |
| R681                                             | 3403.6                                                                                                               | 3403.2                                                           | 3403.2                                                          | -                             | 10/21/18              |                    | Z                                           |
| R682                                             | 3356.1                                                                                                               | 3356.0                                                           |                                                                 |                               | 1                     |                    | 1                                           |
| R683                                             | 3289.8                                                                                                               | 32 89.3                                                          | 3289.3                                                          | -                             | 11/1/16               |                    | 3                                           |
| R684                                             | 33914                                                                                                                | 3390.8                                                           | 3391.0                                                          | -                             |                       |                    | <b>.</b>                                    |
|                                                  |                                                                                                                      |                                                                  |                                                                 |                               |                       |                    |                                             |
|                                                  |                                                                                                                      |                                                                  |                                                                 |                               |                       |                    |                                             |
|                                                  | Initials:                                                                                                            | Initials: BA                                                     | Initials: BA                                                    | Initials:                     |                       |                    | nan 1 million (million) (million) (million) |
| Final Technician Sig                             | nature: <u>Annature</u>                                                                                              | 2/1/2017                                                         | Date:/22/                                                       | 118                           | <b>-</b><br>Evaluator | signature:         | 6                                           |
| Sond OF NO. F-SEDP-                              | oooz.xis, enective date:                                                                                             | 2/1/2U1/                                                         | 27                                                              |                               |                       | / y = U            |                                             |
| איינערט איז  | 1.1111 (1917) (1917) (1917) (1917) (1917) (1917) (1917) (1917) (1917) (1917) (1917) (1917) (1917) (1917) (1917)<br>- | ······································                           |                                                                 | 4<br>9                        |                       |                    |                                             |

| Tare Sheet: (check one)       Probes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C                        |                                                            |                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                     |                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Prepared By: 3 Dw.S         Balance ID 4: ONN: odd3         Thermohygometer ID 4: ONN: odd3, Audit Weight ID MARS: ONN: odd3 (Audit Weight ID MARS: Odd3 (Aud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tare Sheet: (ch          | eck one) Prob                                              | es 47mi                                               | m Filters                                             | 100mm Filters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O-Ring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dair                                                                                                                                                                                                                                |                                                                                                                        |
| Placed in<br>Desistance:         Date:         ID/II/12/28<br>Time:         Date:         Date:         Date:         ID/II/12/28<br>Time:         Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prepared By: <b>B</b>    | Daus                                                       | Balance ID #: Owwi- 000                               | C37 Thermohygror                                      | meter ID #: 0m Ni-00592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Audit Weight ID #/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mass: 0m Nj-00283A / 20                                                                                                                                                                                                             | 23 ~~                                                                                                                  |
| Date: $21.00 + \infty$ Time: $21.00 + \infty$ Time: $20.00 + \infty$ <t< td=""><td>Placed in<br/>Dessicator:</td><td>Date: 10/11/2018</td><td>Date: 10/12/2018</td><td>Date: <u>10/19/18</u></td><td>Date:</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Placed in<br>Dessicator: | Date: 10/11/2018                                           | Date: 10/12/2018                                      | Date: <u>10/19/18</u>                                 | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                     |                                                                                                                        |
| Time: $Def S_1$ $Def S_2$ $T(TF): \frac{1}{725} \frac{1}{725} \frac{1}{75}$ $T(TF): \frac{1}{725} \frac{1}{725} \frac{1}{75}$ $T(TF): \frac{1}{725} \frac{1}{725} \frac{1}{75}$ $T(TF): \frac{1}{725} \frac{1}{725} \frac{1}{75}$ $T(TF): \frac{1}{725} \frac{1}{75} \frac{1}{75}$ $T(TF): \frac{1}{725} \frac{1}{75} \frac{1}{$ | Date: <b>9/11/1</b>      | $\frac{\text{Time: } \underline{9:00 \text{ Pm}}}{15.1\%}$ | Time: $\underline{400 P.M.}$                          | Time: <u>0800</u>                                     | Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                     |                                                                                                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Time: 10:05              | RH %: $15.16$                                              | RH %: <u>7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7</u> | RH %: <u>/7. 9</u>                                    | RH %:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project Number                                                                                                                                                                                                                      | Run No.                                                                                                                |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ID #                     | $1(^{-}F): T3. L$                                          | T (°F): <u>73.5</u>                                   | T (°F): <u>+1.6</u>                                   | T (°F):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                     |                                                                                                                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | Audit: <u>500-C</u>                                        | Audit: <u>500 [</u>                                   | Audit: <u>500./</u>                                   | Audit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                     |                                                                                                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>D573</u>              | 113.7                                                      | 113.8                                                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/30/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0061PS013E                                                                                                                                                                                                                          | 1                                                                                                                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0574                     | 112.1                                                      | 11.9                                                  | $\sim$                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                     |                                                                                                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u></u>                  | 113.7                                                      | 113.5                                                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                     |                                                                                                                        |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>U576</u>              | 1203                                                       | 120.3                                                 | le si terre <del>d</del> i terre da seren di seren di |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                     |                                                                                                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                 | 120.2                                                      | 119.9                                                 | /20./                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                     |                                                                                                                        |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                 | 120.5                                                      | 120.8                                                 | 120.7                                                 | <ul> <li>International Control of Contro</li></ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | مان میں منظمی کا معالم است کا معامل کا منظم کا معالم کا م<br>معالم کا معالم کا معال |                                                                                                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>D579</u>              | 121.0                                                      | 121.0                                                 | ~                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                     |                                                                                                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DSBU                     | 121.3                                                      | 212                                                   | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                     |                                                                                                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D581                     | 120.8                                                      | 120.5                                                 | 120.7                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and a second of a second second second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |                                                                                                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DS82                     | 120.8                                                      | 120 8                                                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Inha /ie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     |                                                                                                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D583                     | 121.3                                                      | 121.6                                                 | 121.5                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | annen a la serie a la serie serie serie de la serie                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                     | <u>112 - 110 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100</u> |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D587                     | 120.2                                                      | 120.6                                                 | 120.5                                                 | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r.                                                                                                                                                                                                                                  |                                                                                                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D585                     | 120.9                                                      | 120.8                                                 |                                                       | Baran - anaran 1999 na managaran karana k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Salah selan antar selan kan kan kan kan kan kan kan kan kan k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                   |                                                                                                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D586                     | 17.0.7                                                     | 120.5                                                 | H                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                     |                                                                                                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>D587</u>              | 120.7                                                      | 120.3                                                 | 120.5                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/21/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                                                                                                                                                                                                                                   | 2                                                                                                                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D588                     | 1210                                                       | 120.9                                                 | 1211                                                  | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     | <u></u>                                                                                                                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D589                     | 121.2                                                      | 121,1                                                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                     |                                                                                                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0590                     | 1213                                                       | 171.2                                                 | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                     |                                                                                                                        |
| DS92 1220 121.8<br>Initials: ML Initials: ML Initials: ML Initials:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D591                     | 120.9                                                      | 120.8                                                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |                                                                                                                        |
| Initials: ML Initials: ML Initials: ML Initials:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D592                     | 1220                                                       | 121.8                                                 | ÷                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                     |                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×                        | Initials: ML                                               | Initials: ML                                          | Initials: An                                          | Initials:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and and an and a second s |                                                                                                                                                                                                                                     |                                                                                                                        |
| -Inal Technician Signature: $\frac{1}{2}$ Date: $\frac{1}{2}$ Date: $\frac{1}{2}$ Date: $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Final Technician Sig     | nature: <u>A</u>                                           |                                                       | _ Date: 10-19-1                                       | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fvaluator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | signature:                                                                                                                                                                                                                          | 0                                                                                                                      |
| Control No. P-SFDP-0002.xls, Effective date: 2/1/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Control No. P-SFDP-      | 0002.xls, Effective date: 2                                | 2/1/2017                                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                     | -                                                                                                                      |

28

`

. . . . . .



LESS THAN 12 OF 1% PRH

#### CLEAN · EFFICIENT · ECONOMICAL



Approvides<sup>10</sup> Fund have be increased to a schere of familie deleting and the increase nanoog patients, Lagrantics in ref. retransmittles for charagese from 4 - retroper to participate in a fund.

Gruntity Made In The USA

Contrast Properties of Features











 Twin Ports Testing, Inc.

 1301 North 3rd Street

 Superior, WI 54880

 p:
 715-392-7114

 p:
 800-373-2562

 f:
 715-392-7163

# Analytical Test Report

www.twinportstesting.com
Report No: USR:W218-1060-01
Issue No: 1

| Ctient:       OMNI-TEST LABORATORIES INC.<br>13327 NE Airport Way<br>Portland, OR 97230       Signed:       Juptu Jupdu Juptu Ju                                     | Analytic                          |               | st nepon            |                           |               |               |                            |              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------|---------------------|---------------------------|---------------|---------------|----------------------------|--------------|
| 13327 NE Airport Way<br>Portland, OR 97230       Stephen Sundeen<br>Chemistry Laboratory Manager         PO No:       180197         Sample Details       Stephen Sundeen<br>Chemistry Laboratory Manager         Sample Dots       W218-1060-01         Sample Designation:       Lignetics Softwood         Sample Recognized As:       Wood Pellets         Attentior       Arrival Date:         11/12/2018       11/12/2018         Test Results       MOISTURE         Moisture Total       ASTM E871         Ash       ASTM D3175         Moisture Total       ASTM D3175         Ash       ASTM D3175         Volatile Matter       ASTM D3175         Stephen by Difference       ASTM D3175         Soluture Total       ASTM D4239         Asth       O.007         Soluture       ASTM D4239         Value at Const. Pressure       ISO 1928         J/g       18910       17634         Gross Cal. Value at Const. Vol.       ASTM E711       J/g       20323         Received values do not include hydrogen and oxygen in the total moisture.       6.50       6.11         Net Cal. Value at Const. Vol.       ASTM D5373       wt. %       0.31       0.29         Gross Cal. Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Client:                           | OMNI-TE       | STIABORATO          | RIES INC                  | Sign          | ed:           |                            |              |
| Attention: Finance Department<br>Portland, OR 97230<br>Attention: Finance Department<br>PO No: 180197<br>Sample Log No: W218-1060-01<br>Sample Details<br>Sample Log No: W218-1060-01<br>Sample Designation: Lignetics Softwood<br>Sample Time:<br>Sample Recognized As: Wood Pellets<br>Arrival Date: 11/12/2018<br>Test Results<br>Test Results<br>Moisture Total<br>ASTM E8711<br>Wt. % 0.26<br>0.26<br>0.25<br>Volatile Matter<br>Fixed Carbon by Difference<br>ASTM D3172<br>Wt. % 0.007<br>Calculated<br>Ib/mmbtu<br>0.007<br>So,<br>Calculated<br>Ib/mmbtu<br>0.007<br>Net Cal. Value at Const. Pressure<br>ISO 1928<br>GJ/tonne<br>18.91<br>17.63<br>Net Cal. Value at Const. Vol.<br>ASTM D5373<br>Wt. %<br>49.48<br>46.52<br>Hydrogen*<br>ASTM D5373<br>Wt. %<br>49.48<br>46.52<br>Hydrogen*<br>ASTM D5373<br>Wt. %<br>49.48<br>46.52<br>Hydrogen*<br>ASTM D5373<br>Wt. %<br>43.44<br>40.84<br>Note: As received values do not include hydrogen and oxygen in the total moisture.<br>Thorine<br>ASTM D6721<br>mg/kg<br>Mercury<br>ASTM D6722<br>mg/kg<br>Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Onent.                            | 13327 NE      |                     |                           | 0.9.1         | 0             | tiphenfusle                | h            |
| Attention:       Finance Department       Stephen Sundeen<br>Chemistry Laboratory Manager         PO No:       180197       Date of Issue:       Stephen Sundeen<br>Chemistry Laboratory Manager         Date of Issue:       11/20/2018       Date of Issue:       THE 20/2018         Sample Details       Sample Deta:       10/30/2018         Sample Recognized As:       Wood Pellets       Arrival Date:       11/1/12/2018         Test Results       MOISTURE       ASTM D1102       wt. %       0.0007       0.006         Moisture Total       ASTM D3175       wt. %       0.0007       0.006         Suffur       ASTM D3175       wt. %       0.0007       0.006         Suffur       ASTM D3172       wt. %       0.0007       0.006         Suffur       ASTM D3172       wt. %       0.0007       0.006         Suffur       ASTM D3172       wt. %       0.007       0.006       Solspan="2">0.007       0.006       Solspan="2"Solspan="2"Solspan="2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   | Portland      |                     |                           |               |               |                            |              |
| PO No:       180197       Chemistry Laboratory Manager         Date of Issue:       11/20/2018         Sample Details       Image: Imag                                                                                                        | Attention                         | Finance F     | Department          |                           |               |               | Stenhen Sundeen            |              |
| PO No:       180197       Date of Issue:       11/20218         Sample Details       sample Designation:       Lignetics Softwood       Sample Date:       10/30/2018         Sample Recognized As:       Wood Pellets       Arrival Date:       10/30/2018         Test Results       MOISTURE       AS         Metro UNITS       FREE RECEIVED       MOISTURE         Moisture Total       ASTM E871       wt. %       0.26         Ash       ASTM D1102       wt. %       0.26       0.25         Volatile Matter       ASTM D3175       wt. %       0.007       0.006         Solutir       ASTM D3172       wt. %       0.007       0.006         Solutar       Calculated       lb/mmbtu       0.016       0.17.63         Net Cal. Value at Const. Pressure       ISO 1928       J/g       18.91       17.63         Soca Cal. Value at Const. Vol.       ASTM E711       J/g       20323       19108         Gross Cal. Value at Const. Vol.       ASTM E711       J/g       20323       19108         Gross Cal. Value at Const. Vol.       ASTM D5373       wt. %       6.50       6.11         Nitrogen*       ASTM D5373       wt. %       0.31       0.29       0.31       0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Allention.                        | I mance L     | repartment          |                           |               |               | Chemistry Laborat          | ory Manager  |
| Theories of loads: Instantion of loads: Instantiation of loads: Instantinstantiate Instanting loads: Instantiation of loads: Instantiatin                            | PO No:                            | 180107        |                     |                           | Date          | of Issue      | 11/20/2018                 | ory manager  |
| Sample Details         Sample Log No:       W218-1060-01       Sample Date:       10/30/2018         Sample Designation:       Lignetics Softwood       Sample Time:         Sample Recognized As:       Wood Pellets       Arrival Date:       11/12/2018         Test Results       MOISTURE       AS         Moisture Total       ASTM E871       wt. %       5.98         Ash       ASTM D1102       wt. %       0.26       0.25         Volatile Matter       ASTM D3175       wt. %       0.007       0.006         Sulfur       ASTM D4239       wt. %       0.007       0.006         Sol_2       Calculated       Ib/mmbtu       0.017       0.33         Sol 50.2       Calculated       Ib/mote       117.63         Gross Cal. Value at Const. Pressure       ISO 1928       J/g       18910       17634         Gross Cal. Value at Const. Vol.       ASTM D5373       wt. %       6.50       6.11         Nitrogen       ASTM D537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10110.                            | 100107        |                     |                           | THIS D        | OCUMENT SHALL | NOT BE REPRODUCED EXCEPT I | N FULL       |
| Sample Details         Sample Log No:       W218-1060-01       Sample Date:       10/30/2018         Sample Designation:       Lignetics Softwood       Sample Time:         Sample Recognized As:       Wood Pellets       Arrival Date:       11/12/2018         Test Results         Moisture Total       ASTM E871       wt. %       5.98         Ash       ASTM D1102       wt. %       0.26       0.25         Volatile Matter       ASTM D3175       wt. %       5.98         Sulfur       ASTM D3172       wt. %       0.007       0.006         Sol_       Calculated       Ib/mmbtu       0.016       0.016         Net Cal. Value at Const. Pressure       ISO 1928       J/g       18910       17634         Gross Cal. Value at Const. Vol.       ASTM E711       J/g       20323       19108         Gross Cal. Value at Const. Vol.       ASTM D5373       wt. %       6.50       6.11         Nitrogen       ASTM D5373       wt. %       6.50       6.11         Nitrogen*       ASTM D5373       wt. %       6.50       6.11         Nitrogen*       ASTM D5373       wt. %       6.50       6.11         Nitrogen*       ASTM D5373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |               |                     |                           |               |               |                            | -            |
| Sample Log No:       W218-1060-01       Sample Date:       10/30/2018         Sample Designation:       Lignetics Softwood       Sample Time:       11/12/2018         Sample Recognized As:       Wood Pellets       Arrival Date:       11/12/2018         Test Results       MOISTURE       AS         Method       UNITS       FREE       RECEIVED         Moisture Total       ASTM E871       wt. %       0.26       0.25         Volatile Matter       ASTM D3175       wt. %       0.26       0.25         Volatile Matter       ASTM D3175       wt. %       0.007       0.006         Sulfur       ASTM D4239       wt. %       0.007       0.006         SQ.       Calculated       Ib/mmbtu       0.016       0.166         Net Cal. Value at Const. Pressure       ISO 1928       GJ/tonne       18.91       17.63         Gross Cal. Value at Const. Vol.       ASTM E711       J/g       20323       19108         Gross Cal. Value at Const. Vol.       ASTM E711       Btu/lb       8738       8216         Carbon       ASTM D5373       wt. %       0.31       0.29         Oxygen*       ASTM D5373       wt. %       0.31       0.29         Oxygen*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample Detai                      | ils           |                     |                           |               |               |                            |              |
| Sample Designation:       Lignetics Softwood       Sample Time:<br>Arrival Date:       11/12/2018         Test Results       MOISTURE       AS         MeTHOD       UNITS       FREE       RECEIVED         Moisture Total       ASTM E871       wt. %       5.98         Ash       ASTM D1102       wt. %       0.26       0.25         Volatile Matter       ASTM D3175       wt. %       0.007       0.006         Sulfur       ASTM D4239       wt. %       0.007       0.006         So2       Calculated       lb/mmbtu       0.016         Net Cal. Value at Const. Pressure       ISO 1928       GJ/tonne       18.91       17.63         Roross Cal. Value at Const. Pressure       ISO 1928       J/g       18910       17634         Gross Cal. Value at Const. Vol.       ASTM E711       J/g       20323       19108         Gross Cal. Value at Const. Vol.       ASTM D5373       wt. %       6.50       6.11         Nitrogen*       ASTM D5373       wt. %       0.31       0.29         Oxygen*       ASTM D5373       wt. %       43.44       40.84         *Note: As received values do not include hydrogen and oxygen in the total moisture.       Chlorine       ASTM D571       mg/kg </th <th>Sample Log No</th> <th>0:</th> <th>W218-1060-0</th> <th>1</th> <th>Sample D</th> <th>ate:</th> <th>10/30/2018</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample Log No                     | 0:            | W218-1060-0         | 1                         | Sample D      | ate:          | 10/30/2018                 |              |
| Sample Recognized As:         Wood Pellets         Arrival Date:         11/12/2018           Test Results         MOISTURE         AS           Moisture Total         ASTM E871         wt. %         5.98           Ash         ASTM D1102         wt. %         0.26         0.25           Volatile Matter         ASTM D3175         wt. %         0.007         0.006           Sulfur         ASTM D3175         wt. %         0.007         0.006           Sulfur         ASTM D4239         wt. %         0.007         0.006           So2         Calculated         lb/mmbtu         0.016           Net Cal. Value at Const. Pressure         ISO 1928         GJ/tonne         18.91         17.63           Gross Cal. Value at Const. Vol.         ASTM E711         J/g         20323         19108           Gross Cal. Value at Const. Vol.         ASTM D5373         wt. %         49.48         46.52           Hydrogen*         ASTM D5373         wt. %         0.31         0.29           Oxygen*         ASTM D5373         wt. %         43.44         40.84           *Note: As received values do not include hydrogen and oxygen in the total moisture.         43.44         40.84           *Note: As received values do not i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample Desigr                     | nation:       | Lignetics Soft      | wood                      | Sample Ti     | me:           |                            |              |
| Test ResultsMOISTURE<br>METHODMOISTURE<br>UNITSAS<br>FREERECEIVEDMoisture TotalASTM E871wt. %5.98AshASTM D1102wt. %0.260.25Volatile MatterASTM D3175wt. %0.0070.006SulfurASTM D3172wt. %0.0070.006So2Calculatedlb/mmbtu0.0160.016Net Cal. Value at Const. PressureISO 1928J/g1891017.634Gross Cal. Value at Const. Vol.ASTM E711J/g2032319108Gross Cal. Value at Const. Vol.ASTM E711Btu/lb87388216CarbonASTM D5373wt. %0.310.29AsTM D5373wt. %0.310.290xygen*ASTM D5373wt. %43.44"Note: As received values do not include hydrogen and oxygen in the total moisture.MSTM D6721mg/kgMg/kgFluorineASTM D6721mg/kgMg/kgMg/kgMg/kgMercuryASTM D6722mg/kgMg/kgMg/kgMg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample Recog                      | nized As:     | Wood Pellets        |                           | Arrival Da    | te:           | 11/12/2018                 |              |
| METHODUNITSMOISTURE<br>FREEAS<br>RECEIVEDMoisture TotalASTM E871wt. %5.98AshASTM D1102wt. %0.26Volatile MatterASTM D3175wt. %Fixed Carbon by DifferenceASTM D3172wt. %SulfurASTM D4239wt. %0.007So2Calculatedlb/mmbtu0.016Net Cal. Value at Const. PressureISO 1928J/g18910Recs Cal. Value at Const. PressureISO 1928J/g18910Gross Cal. Value at Const. Vol.ASTM E711J/g2032319108Gross Cal. Value at Const. Vol.ASTM E711Btu/lb87388216CarbonASTM D5373wt. %6.506.11NitrogenASTM D5373wt. %0.310.29Oxygen*ASTM D6721mg/kg43.4440.84*Note: As received values do not include hydrogen and oxygen in the total moisture.mg/kg4STM D3761FluorineASTM D3761mg/kgFluorineASTM D6722MercuryASTM D6722mg/kgHard Actional Astm D6722Mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Test Results                      |               |                     |                           |               |               |                            |              |
| METHODUNITSFREERECEIVEDMoisture TotalASTM E871wt. %5.98AshASTM D1102wt. %0.260.25Volatile MatterASTM D3175wt. %Fixed Carbon by DifferenceASTM D3172wt. %0.0070.006SulfurASTM D4239wt. %0.0070.006So2Calculatedlb/mmbtu0.016Net Cal. Value at Const. PressureISO 1928GJ/tonne18.9117.63Gross Cal. Value at Const. Vol.ASTM E711J/g2032319108Gross Cal. Value at Const. Vol.ASTM E711Btu/lb87388216CarbonASTM D5373wt. %49.4846.52Hydrogen*ASTM D5373wt. %43.4440.84"Note: As received values do not include hydrogen and oxygen in the total moisture.0.310.29ChlorineASTM D6721mg/kgFluorineASTM D6722mg/kgFree CarbonASTM D6722mg/kg44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |               |                     |                           |               |               | MOISTURE                   | 49           |
| Main of the second se |                                   |               |                     | METHOD                    | UNIT          | s             | FREE                       | RECEIVED     |
| Moisture Total       ASTM E871       WL. %       5.96         Ash       ASTM D1102       wt. %       0.26       0.25         Volatile Matter       ASTM D3175       wt. %       Fixed Carbon by Difference       ASTM D3172       wt. %         Sulfur       ASTM D4239       wt. %       0.007       0.006         S0 <sub>2</sub> Calculated       Ib/mmbtu       0.016         Net Cal. Value at Const. Pressure       ISO 1928       GJ/tonne       18.91       17.63         Reross Cal. Value at Const. Pressure       ISO 1928       J/g       18910       17634         Gross Cal. Value at Const. Vol.       ASTM E711       J/g       20323       19108         Gross Cal. Value at Const. Vol.       ASTM D5373       wt. %       49.48       46.52         Hydrogen*       ASTM D5373       wt. %       0.31       0.29         Oxygen*       ASTM D5373       wt. %       43.44       40.84         "Note: As received values do not include hydrogen and oxygen in the total moisture.       Viote: As received values do not include hydrogen and oxygen in the total moisture.       Chlorine       ASTM D6721       mg/kg         Fluorine       ASTM D6721       mg/kg       Mrkg       Fluorine       ASTM D6722       mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maiatura Tatal                    | 1             |                     |                           |               | /             |                            | <u>5 00</u>  |
| Ast in       Ast in D1102       wt. %       0.26       0.25         Volatile Matter       ASTM D3175       wt. %           Fixed Carbon by Difference       ASTM D3172       wt. %       0.007       0.006         Sulfur       ASTM D4239       wt. %       0.007       0.006         SO2       Calculated       lb/mmbtu       0.016         Net Cal. Value at Const. Pressure       ISO 1928       GJ/tonne       18.91       17.63         Gross Cal. Value at Const. Vol.       ASTM E711       J/g       20323       19108         Gross Cal. Value at Const. Vol.       ASTM D5373       wt. %       49.48       46.52         Carbon       ASTM D5373       wt. %       0.31       0.29         Kydrogen*       ASTM D5373       wt. %       0.31       0.29         Nitrogen       ASTM D5373       wt. %       43.44       40.84         "Note: As received values do not include hydrogen and oxygen in the total moisture.       43.44       40.84         "Note: As received values do not include hydrogen and oxygen in the total moisture.       Chlorine       ASTM D3761       mg/kg         Fluorine       ASTM D3761       mg/kg       Mercury       ASTM D6722       mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |               |                     |                           | WL. 7         | ′0<br>/       | 0.26                       | 5.98<br>0.25 |
| Volatile MatterASTM D3173Wt. %Fixed Carbon by DifferenceASTM D3172wt. %SulfurASTM D4239wt. %0.007SO2Calculatedlb/mmbtu0.016Net Cal. Value at Const. PressureISO 1928GJ/tonne18.91ISO 1928J/g1891017634Gross Cal. Value at Const. Vol.ASTM E711J/g2032319108Gross Cal. Value at Const. Vol.ASTM E711Btu/lb87388216CarbonASTM D5373wt. %49.4846.52Hydrogen*ASTM D5373wt. %0.310.29Oxygen*ASTM D3176wt. %43.4440.84*Note: As received values do not include hydrogen and oxygen in the total moisture.mg/kgFluorineChlorineASTM D6721mg/kgFluorineASTM D6722mg/kgMercuryASTM D6722mg/kgImageImage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ASN<br>Volotilo Mottor            |               |                     |                           | WL. 7         | 0<br>/        | 0.20                       | 0.25         |
| Prized Carbon by DifferenceASTM D3172W. %SulfurASTM D4239wt. %SulfurASTM D4239wt. %So2Calculatedlb/mmbtuNet Cal. Value at Const. PressureISO 1928GJ/tonneISO 1928J/g1891017634Gross Cal. Value at Const. Vol.ASTM E711J/g20323Gross Cal. Value at Const. Vol.ASTM E711Btu/lb8738BarronASTM D5373wt. %49.4846.52Hydrogen*ASTM D5373wt. %6.506.11NitrogenASTM D5373wt. %0.310.29Oxygen*ASTM D3176wt. %43.4440.84*Note: As received values do not include hydrogen and oxygen in the total moisture.ChlorineASTM D6721MorecuryASTM D6722mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fixed Carbon                      | hy Differen   | ~~                  |                           | WL. 7         | 0<br>/        |                            |              |
| Suntur         ASTM D4239         Wt. %         0.007         0.006           SO2         Calculated         Ib/mmbtu         0.016           Net Cal. Value at Const. Pressure         ISO 1928         GJ/tonne         18.91         17.63           Net Cal. Value at Const. Pressure         ISO 1928         J/g         18910         17634           Gross Cal. Value at Const. Vol.         ASTM E711         J/g         20323         19108           Gross Cal. Value at Const. Vol.         ASTM E711         Btu/lb         8738         8216           Carbon         ASTM D5373         wt. %         49.48         46.52           Hydrogen*         ASTM D5373         wt. %         0.31         0.29           Oxygen*         ASTM D3176         wt. %         43.44         40.84           *Note: As received values do not include hydrogen and oxygen in the total moisture.           Chlorine           Fluorine         ASTM D6721         mg/kg           Group         ASTM D6722         mg/kg           Mercury         ASTM D6722         mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fixed Carbon I                    | by Differen   | ce                  | ASTM D3172                | WL. 7         | 0<br>/        | 0.007                      | 0.006        |
| SO2CalculatedID/ITITIDId0.016Net Cal. Value at Const. PressureISO 1928GJ/tonne18.9117.63Net Cal. Value at Const. PressureISO 1928J/g1891017634Gross Cal. Value at Const. Vol.ASTM E711J/g2032319108Gross Cal. Value at Const. Vol.ASTM E711Btu/lb87388216CarbonASTM D5373wt. %49.4846.52Hydrogen*ASTM D5373wt. %6.506.11NitrogenASTM D5373wt. %0.310.29Oxygen*ASTM D3176wt. %43.4440.84*Note: As received values do not include hydrogen and oxygen in the total moisture.ChlorineASTM D6721mg/kgFluorineASTM D3761mg/kgFluorineMercuryASTM D6722mg/kg1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sullur                            |               |                     | ASTIM D4239               | WL. 7         | 0             | 0.007                      | 0.006        |
| Net Cal. Value at Const. PressureISO 1928GG/t0111e18.9117.03Net Cal. Value at Const. PressureISO 1928J/g1891017634Gross Cal. Value at Const. Vol.ASTM E711J/g2032319108Gross Cal. Value at Const. Vol.ASTM E711Btu/lb87388216CarbonASTM D5373wt. %49.4846.52Hydrogen*ASTM D5373wt. %6.506.11NitrogenASTM D5373wt. %0.310.29Oxygen*ASTM D3176wt. %43.4440.84*Note: As received values do not include hydrogen and oxygen in the total moisture.ChlorineASTM D6721mg/kgFluorineASTM D3761mg/kgFluorineMercuryASTM D6722mg/kg107.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SU <sub>2</sub><br>Not Col. Voluo | at Canat E    | Processire          |                           |               | u             | 10 01                      | 0.010        |
| Net Cal. Value at Const. PressureISO 1926J/g1891017034Gross Cal. Value at Const. Vol.ASTM E711J/g2032319108Gross Cal. Value at Const. Vol.ASTM E711Btu/lb87388216CarbonASTM D5373wt. %49.4846.52Hydrogen*ASTM D5373wt. %6.506.11NitrogenASTM D5373wt. %0.310.29Oxygen*ASTM D3176wt. %43.4440.84*Note: As received values do not include hydrogen and oxygen in the total moisture.ChlorineASTM D6721mg/kgFluorineASTM D3761mg/kgFluorineMercuryASTM D6722mg/kg4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Net Cal. Value                    | at Const. F   |                     | 150 1920                  | GJ/(OIII)     |               | 10.91                      | 17.03        |
| Gross Cal. Value at Const. Vol.ASTM E711Jrg2032319106Gross Cal. Value at Const. Vol.ASTM E711Btu/lb87388216CarbonASTM D5373wt. %49.4846.52Hydrogen*ASTM D5373wt. %6.506.11NitrogenASTM D5373wt. %0.310.29Oxygen*ASTM D3176wt. %43.4440.84*Note: As received values do not include hydrogen and oxygen in the total moisture.mg/kgFluorineChlorineASTM D6721mg/kgmg/kgFluorineASTM D3761mg/kg43.74MercuryASTM D6722mg/kg43.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Groce Col. Vol                    | at Const. r   |                     | 130 1920<br>ASTM E711     | J/            | y             | 20323                      | 17034        |
| CarbonASTM E/TTDtd/ld67366216Hydrogen*ASTM D5373wt. %49.4846.52Hydrogen*ASTM D5373wt. %6.506.11NitrogenASTM D5373wt. %0.310.29Oxygen*ASTM D3176wt. %43.4440.84*Note: As received values do not include hydrogen and oxygen in the total moisture.ChlorineASTM D6721mg/kgFluorineASTM D3761mg/kgMercuryASTM D6722mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gross Cal. Val                    | ue al Cons    | t Vol               | ASTM E711                 | J/<br>Btu/l   | y<br>h        | 20323                      | 8216         |
| CarbonASTM D5373wt. %49.4846.52Hydrogen*ASTM D5373wt. %6.506.11NitrogenASTM D5373wt. %0.310.29Oxygen*ASTM D3176wt. %43.4440.84*Note: As received values do not include hydrogen and oxygen in the total moisture.mg/kgChlorineASTM D6721mg/kgFluorineASTM D3761mg/kgMercuryASTM D6722mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |               |                     | AGTWIETT                  | Dturi         | 0             | 0750                       | 0210         |
| Hydrogen*ASTM D5373wt. %6.506.11NitrogenASTM D5373wt. %0.310.29Oxygen*ASTM D3176wt. %43.4440.84*Note: As received values do not include hydrogen and oxygen in the total moisture.mg/kgChlorineASTM D6721mg/kgFluorineASTM D3761mg/kgMercuryASTM D6722mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Carbon                            |               |                     | ASTM D5373                | wt. 9         | 6             | 49.48                      | 46.52        |
| Nitrogen       ASTM D5373       wt. %       0.31       0.29         Oxygen*       ASTM D3176       wt. %       43.44       40.84         *Note: As received values do not include hydrogen and oxygen in the total moisture.         Chlorine       ASTM D6721       mg/kg         Fluorine       ASTM D3761       mg/kg         Mercury       ASTM D6722       mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hvdrogen*                         |               |                     | ASTM D5373                | wt. 9         | 6             | 6.50                       | 6.11         |
| Oxygen*       ASTM D3176       wt. %       43.44       40.84         *Note: As received values do not include hydrogen and oxygen in the total moisture.       43.44       40.84         Chlorine       ASTM D6721       mg/kg         Fluorine       ASTM D3761       mg/kg         Mercury       ASTM D6722       mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Nitrogen                          |               |                     | ASTM D5373                | wt. %         | 6             | 0.31                       | 0.29         |
| *Note: As received values do not include hydrogen and oxygen in the total moisture. Chlorine ASTM D6721 mg/kg Fluorine ASTM D3761 mg/kg Mercury ASTM D6722 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Oxygen*                           |               |                     | ASTM D3176                | wt. %         | 6             | 43.44                      | 40.84        |
| ChlorineASTM D6721mg/kgFluorineASTM D3761mg/kgMercuryASTM D6722mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *Note: As re                      | ceived values | do not include hydr | ogen and oxygen in the to | tal moisture. |               |                            |              |
| ChlorineASTM D6721mg/kgFluorineASTM D3761mg/kgMercuryASTM D6722mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |               |                     |                           |               |               |                            |              |
| Fluorine     ASTM D3761     mg/kg       Mercury     ASTM D6722     mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chlorine                          |               |                     | ASTM D6721                | mg/k          | g             |                            |              |
| Mercury ASTM D6722 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fluorine                          |               |                     | ASTM D3761                | mg/k          | g             |                            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mercury                           |               |                     | ASTM D6722                | mg/k          | g             |                            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bulk Donsity                      |               |                     |                           |               | 3             |                            |              |
| Fines (Less than $1/8^{"}$ ) TPT CH_P_06 wt %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fines (Less th                    | an 1/8")      |                     |                           | IDS/T         | 6             |                            |              |
| Durability Index Kansas State PDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Durability Inde                   |               |                     | Kansas State              | PF            | 0             |                            |              |
| Sample Above 1 50" TPT CH-P-06 wt %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample Above                      | 1 50"         |                     | TPT CH-P-06               | wrt 9         | 6             |                            |              |
| Maximum Length (Single Pellet) TPT CH-P-06 inch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum Len                       | ath (Sinale   | Pellet)             | TPT CH-P-06               | inc           | h             |                            |              |
| Diameter Range TPT CH-P-05 inch to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Diameter Ran                      | aer (oniðie   |                     | TPT CH-P-05               | inc           | h             |                            | to           |
| Diameter, Average TPT CH-P-05 inch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Diameter Ave                      | ade<br>a      |                     | TPT CH-P-05               | inc           | h             |                            |              |
| Stated Bag Weight TPT CH-P-01 lbs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stated Bag We                     | eiaht         |                     | TPT CH-P-01               | lh            | s             |                            |              |
| Actual Bag Weight TPT CH-P-01 lbs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Actual Bag We                     | eiaht         |                     | TPT CH-P-01               | lb<br>Ih      | S<br>S        |                            |              |

Comments

# Section 3 Laboratory Quality Assurance

- 3.1 Quality Assurance/Quality Control3.2 Calibration Data
- 3.3 Example Calculations

### 3.1 - Quality Assurance/Quality Control

*OMNI* follows the guidelines of ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories," and the quality assurance/quality control (QA/QC) procedures found in *OMNI*'s Quality Assurance Manual.

OMNI's scope of accreditation includes, but is not limited to, the following:

- To perform product safety testing by the International Accreditation Service, Inc. (formerly ICBO ES) under accreditation as a testing laboratory designated TL-130.
- To perform product safety testing as a "Certification Organization" by the Standards Council of Canada (SCC).
- Serving as a testing laboratory for the certification of wood heaters by the U.S. Environmental Protection Agency.

This report is issued within the scope of *OMNI*'s accreditation. Accreditation certificates are available upon request.

The manufacturing facilities and quality control system for the production of the Classic Bay 1200-C at Hearth & Home Technologies were evaluated to determine if sufficient to maintain conformance with OMNI's requirements for product certification. OMNI has concluded that the manufacturing facilities, processes, and quality control system are adequate to produce the appliance congruous with the standards and model codes to which it was evaluated.

This report shall not be reproduced, except in full, without the written approval of OMNI-Test Laboratories, Inc.

### 3.2 - Calibration Data

| ID # | Lab Name/Purpose              | Log Name                                 | Attachment Type         |
|------|-------------------------------|------------------------------------------|-------------------------|
| 132  | 10 lb Weight                  | Weight Standard, 10 lb.                  | Calibration Certificate |
| 283A | Audit Weights                 | Troemner 21pc Msas Set                   | Calibration Certificate |
| 371  | Sample Box / Dry Gas<br>Meter | Apex Automated Emissions<br>Sampling Box | Calibration Log         |
| 372  | Sample Box / Dry Gas<br>Meter | Apex Automated Emissions<br>Sampling Box | Calibration Log         |
| 410  | Microtector                   | Dwyer Microtector                        | Calibration Certificate |
| 420  | Combustion Gas<br>Analyzer    | CAI Gas Analyzer                         | See Run Sheet           |
| 559  | Vaneometer                    | Dwyer Vaneometer                         | Equipment Record        |
| 592  | Thermohygrometer              | Omega Digital<br>Thermohygrometer        | Calibration Log         |
| 637  | Milligram Balance             | Analytical Balance - Mettler -<br>Toledo | Calibration Certificate |
| 650* | Barometer/Hygrometer          | Digital Barometer                        | Calibration Certificate |

### Equipment for ASTM E2515, ASTM E2779, & EPA Method 28R

\* The barometer used was outside the bi-annual calibration cycle required by ASTM E2515-11. The barometer was subsequently calibrated on April 18, 2019 and was received by the calibration lab "in tolerance". This subsequent calibration record has been added to this section.

### **Certificate of Calibration**

Certificate Number: 698278

**Omni-Test Laboratories** 13327 NE Airport Way Portland, OR 97230

> Property #: OMNI-00650 User: N/A Department: N/A



JJ Calibrations, Inc. 7007 SE Lake Rd Portland, OR 97267-2105 Phone 503.786.3005 FAX 503.786.2994

| PO: <b>190231</b><br>Order Date: <b>04/04</b><br>Authorized By: <b>N/A</b> | /2019            | ACCREDITED<br>0723.01<br>Calibration |
|----------------------------------------------------------------------------|------------------|--------------------------------------|
| Calibrated on:                                                             | 04/18/2019       |                                      |
| *Recommended Due:                                                          | 04/18/2020       |                                      |
| Environment:                                                               | 22 °C 53 % RH    |                                      |
| * As Received:                                                             | Within Tolerance |                                      |
| * As Returned:                                                             | Within Tolerance |                                      |
| Action Taken:                                                              | Calibrated       |                                      |
| Technician:                                                                | 146              |                                      |

Make: Control Company Model: 6530 Serial #: 181062211 Description: Thermohygrometer / Barometer Procedure: 403406 Accuracy: ±3%RH, ±.4°C(0.8°F), ±4mbar(0.12inHg)

\* Many factors may cause the unit to drift out of calibration before the recommended due date. Any reported error is the absolute value between the reference and the unit. Remarks: Uncertainties include the effects of the unit.

|          |                    |       | Standards Used                  |            |          |
|----------|--------------------|-------|---------------------------------|------------|----------|
| Std ID   | Manufacturer       | Model | Nomenclature                    | Due Date   | Trace ID |
| 847A     | Fluke              | RPM4  | Reference Pressure Monitor      | 11/21/2019 | 688957   |
| 644A     | Thunder Scientific | 1200  | Two Pressure Humidity Generator | 07/30/2019 | 674006   |
| Paramete | r                  |       | Measurement Data                |            |          |

| Measurement Description | Range Unit |           |        |        |        | UUT U       | ncertainty              |
|-------------------------|------------|-----------|--------|--------|--------|-------------|-------------------------|
| Before/After            |            | Reference | Min    | Max    | *Error | Ac          | credited = $\checkmark$ |
| Humidity                |            |           |        |        |        |             |                         |
|                         | %          | 13.0      | 10     | 16     | 1      | 14 %        | 5.8E-01 🗸               |
|                         | %          | 50.0      | 47     | 53     | 2      | 48 %        | 5.8E-01 🗸               |
|                         | %          | 80.0      | 77     | 83     | 3      | 77 %        | 5.8E-01 🗸               |
| Temperature             |            |           |        |        |        |             |                         |
| -                       | °C         | 20.00     | 19.6   | 20.4   | 0.4    | 19.6 °C     | 8.1E-02 🗸               |
|                         | °C         | 35.00     | 34.6   | 35.4   | 0.4    | 34.6 °C     | 8.1E-02 ✓               |
|                         | °C         | 50.00     | 49.6   | 50.4   | 0.2    | 49.8 °C     | 8.1E-02 ✓               |
| Barometer               |            |           |        |        |        |             |                         |
|                         | 29 inHg    | 29.6210   | 29.501 | 29.741 | 0.009  | 29.630 inHg | 8.1E-02 🗸               |

JJ Calibrations, Inc. certifies that this instrument has been calibrated in accordance with the JJ Calibrations Quality Assurance Manual with the stated procedure using standards that are traceable to the National Institute of Standards and Technology (NIST), or other National Measurement Institutes (NMI's), or by using natural physical constants, intrinsic standards or ratio calibration techniques. The quality system and this certificate are in compliance with ANSI/NCSL Z540-1-1994, ISO/IEC 17025-2005, ISO 10012-1, the ISO 9000 family and QS 9000. The expanded uncertainties of measurements for this calibration are based upon 95% (2 sigma) confidence limits. Unless otherwise stated, a test accuracy ratio (TAR) of 4.1, if achievable, is maintained. The results reported herein apply only to the calibration of the item described above. This report may not be reproduced, except in full, without prior written consent of JJ Calibrations, Inc. JJ Calibrations, Inc. quality system has been assessed and accredited to ISO/IEC 17025:2005.

3 Issued 04/19/2019

Inspector

Rev # 15

Certificate: 698278

OMNI Environmental Services, Inc. OMNI-Test Laboratories, Inc.

# SCALE WEIGHT CALIBRATION DATA SHEET

| Weight to be calibrated: <u>10 po</u> | ounds       |          | <br>                                             | <br> |  |
|---------------------------------------|-------------|----------|--------------------------------------------------|------|--|
| ID Number: <u>OMNI-00132</u>          |             |          |                                                  |      |  |
| Standard Calibration Weight:          | <u>10 p</u> | ounds    | <br><u>.                                    </u> | <br> |  |
| ID Number: <u>OMNI-00255</u>          |             |          |                                                  |      |  |
| Scale Used: <u>MTW-150K</u>           |             |          | <br>                                             |      |  |
| ID Number: <u>OMNI-00353</u>          |             |          |                                                  |      |  |
| Date: 2/23/2018                       | By:         | B. Davis |                                                  |      |  |

| Standard Weight (A) | Weight Verified (B) | Difference | % Error |
|---------------------|---------------------|------------|---------|
| (Lb.)               | (Lb.)               | (A - B)    |         |
| 10.0                | 10.0                | 0.0        | 0       |

\*Acceptable tolerance is 1%.

This calibration is traceable to NIST using calibrated standard weights.

Technician signature: \_\_\_\_ Date: <u>\_2/23/13</u>\_\_\_  $\supset$
# JJ Calibrations, Inc.

•• - 4 **Č**\$

<u>.</u>

Manufacturer: Troemner Inc. Model: 1mg-100g (Class F) Nomenclature: Mass Set, 21 Pc. Serial: 47883

3

۰.

-

Certificate #: 543402 Date: 09Oct2013 Technician: 34 Calibration Interval: 60 Months

 $\mathcal{A}$ 

|                                        |     |               | JJ       |                                                                                                                | UUT                                                                                                            | Uncertainty                                                                     |
|----------------------------------------|-----|---------------|----------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Parameter                              |     | Nominal       | Standard | UUT                                                                                                            | ± Limit                                                                                                        | ±                                                                               |
| Mass Verification                      |     |               |          | a si deneral de chemina de la constante a la constante de la constante de la constante de la constante de la c | n mer verkendelsen en einer gehanden som det er konstandelse behanden en er som det som det som det som det so | nen hänge og sen strender av en frester fri ut sin var en de sen forset fri sis |
| Data in mg                             |     | 1             | 0.996    | 1.048                                                                                                          | 0.100                                                                                                          | 0.0115                                                                          |
|                                        | dot | 2             | 2.002    | 1.973                                                                                                          | 0.120                                                                                                          | 0.0115                                                                          |
|                                        |     | 2             | 2.002    | 2.048                                                                                                          | 0.120                                                                                                          | 0.0115                                                                          |
|                                        |     | 5             | 4.996    | 5.033                                                                                                          | 0.170                                                                                                          | 0.0115                                                                          |
|                                        |     | 10            | 10.000   | 10.053                                                                                                         | 0.210                                                                                                          | 0.0115                                                                          |
| ······································ | dot | 20            | 19.999   | 19.966                                                                                                         | 0.260                                                                                                          | 0.0115                                                                          |
|                                        |     | 20            | 19.999   | 20.069                                                                                                         | 0.260                                                                                                          | 0.0115                                                                          |
|                                        |     | 50            | 49.998   | 50.018                                                                                                         | 0.350                                                                                                          | 0.0115                                                                          |
|                                        | _   | 100           | 99.998   | 100.144                                                                                                        | 0.430                                                                                                          | 0.0115                                                                          |
|                                        | dot | 200           | 199.999  | 200.045                                                                                                        | 0.540                                                                                                          | 0.0115                                                                          |
|                                        |     | 200           | 199.999  | 199.967                                                                                                        | 0.540                                                                                                          | 0.0115                                                                          |
|                                        | 1   | 500           | 499.996  | 500.334                                                                                                        | 0.720                                                                                                          | 0.0115                                                                          |
| Data in grams                          | -   |               |          | Missing                                                                                                        |                                                                                                                |                                                                                 |
|                                        | dot | $\frac{1}{2}$ | 2.000000 | 1.999888                                                                                                       | 0.0011                                                                                                         | 0.0000394                                                                       |
|                                        |     | 2             | 2.000000 | 2.000335                                                                                                       | 0.0011                                                                                                         | 0.0000394                                                                       |
|                                        | 1   | 5             | 5.000002 | 4,999996                                                                                                       | 0.0015                                                                                                         | 0.0000395                                                                       |
|                                        | 1   | 10            | 9.99998  | 9,99984                                                                                                        | 0.0020                                                                                                         | 0.0000580                                                                       |
|                                        | dot | 20            | 19,99999 | 20.00100                                                                                                       | 0.0040                                                                                                         | 0.0000855                                                                       |
|                                        |     | 20            | 19 99999 | 20.0079                                                                                                        | 0.0040                                                                                                         | 0.0000855                                                                       |
|                                        | -   | 50            | 49 99997 | 49 99949                                                                                                       | 0.0000                                                                                                         | 0.00000000                                                                      |
|                                        |     | 100           | 999999   | 00 00802                                                                                                       | 0.0100                                                                                                         | 0.0001000                                                                       |
|                                        |     |               |          | 00.00002                                                                                                       | 0.02.00                                                                                                        | 0.0002300                                                                       |
|                                        |     |               |          |                                                                                                                |                                                                                                                |                                                                                 |
|                                        | 1   |               |          |                                                                                                                |                                                                                                                |                                                                                 |
|                                        | 1   | 1             |          |                                                                                                                |                                                                                                                |                                                                                 |
|                                        | 1   |               |          |                                                                                                                |                                                                                                                |                                                                                 |
|                                        | -   |               |          |                                                                                                                |                                                                                                                |                                                                                 |
|                                        | -   |               |          |                                                                                                                |                                                                                                                |                                                                                 |
|                                        |     |               |          |                                                                                                                |                                                                                                                |                                                                                 |
|                                        | -   |               |          |                                                                                                                |                                                                                                                |                                                                                 |
| · · · · · · · · · · · · · · · · · · ·  |     |               |          |                                                                                                                |                                                                                                                |                                                                                 |
|                                        |     | 1             |          |                                                                                                                |                                                                                                                |                                                                                 |
|                                        |     | 1             |          |                                                                                                                | · · · · · · · · · ·                                                                                            |                                                                                 |
|                                        |     |               |          | ii                                                                                                             |                                                                                                                |                                                                                 |
| · · · · · · · · · · · · · · · · · · ·  | 1   |               |          |                                                                                                                |                                                                                                                |                                                                                 |
|                                        | 1   |               |          |                                                                                                                |                                                                                                                |                                                                                 |
|                                        | 1   | 1             |          |                                                                                                                |                                                                                                                |                                                                                 |
|                                        | 1   |               |          |                                                                                                                | <u> </u>                                                                                                       |                                                                                 |
|                                        |     | 1             |          |                                                                                                                |                                                                                                                |                                                                                 |
|                                        | 1   | 1             |          |                                                                                                                |                                                                                                                |                                                                                 |
|                                        |     |               |          |                                                                                                                |                                                                                                                |                                                                                 |
|                                        |     |               |          |                                                                                                                |                                                                                                                |                                                                                 |

37

## **Certificate of Calibration**

Certificate Number: 685888

**Omni-Test Laboratories** 13327 NE Airport Way Portland, OR 97230



### JJ Calibrations, Inc. 7007 SE Lake Rd Portland, OR 97267-2105 Phone 503.786.3005 FAX 503.786.2994

bration

| PO: 180188          | ACC             |
|---------------------|-----------------|
| Order Date: 10/09/2 | 2018 07         |
| Authorized By: N/A  | Cal             |
| Calibrated on: 1    | 0/26/2018       |
| *Recommended Due: 1 | 0/26/2023       |
| Environment: 2      | 20 °C 57 % RH   |
| * As Received: W:   | ithin Tolerance |
| * As Returned: W:   | ithin Tolerance |
| Action Taken: Ca    | alibrated       |
| Technician: 13      | 9               |

Property #: OMNI-00283A User: N/A Department: N/A Make: Troemner Inc Model: 1mg-100g (Class F) Serial #: 47883 Description: Mass Set, 21pc Procedure: DCN 500901

Accuracy: Class F

\* Many factors may cause the unit to drift out of calibration before the recommended due date. Any reported error is the absolute value between the reference and the unit. Remarks: Uncertainties include the effects of the unit.

#### This set meets Class F specifications.

Received and returned eight (8) masses in a black case secured by a rubber band.

| Standards Used |                     |                    |                    |            |          |  |
|----------------|---------------------|--------------------|--------------------|------------|----------|--|
| Std ID         | <u>Manufacturer</u> | Model              | Nomenclature       | Due Date   | Trace ID |  |
| 723A           | Rice Lake           | 1mg-200g (Class 0) | Mass Set,          | 03/23/2019 | 668240   |  |
| 800A           | Sartorius           | MSA225W100DI       | Analytical Balance | 12/11/2018 | 663857   |  |

| Parameter               |            | Mea        | asurement | Data      |           |             |                           |
|-------------------------|------------|------------|-----------|-----------|-----------|-------------|---------------------------|
| Measurement Description | Range Unit |            |           |           |           | UUT         | Uncertainty               |
| Before/After<br>Mass    |            | Reference  | Min       | Max       | *Error    |             | Accredited = $\checkmark$ |
| Dot                     | 200 mg     | 200.00030  | 199.4603  | 200.5403  | 0.0500    | 200.0503 mg | 6.2E-01 🗸                 |
|                         | 1 g        | 1.00000880 | 0.9991088 | 1.0009088 | 0.0000000 | 1.000088 g  | 1E-03 🗸                   |
|                         | 2 g        | 2.00001470 | 1.9989147 | 2.0011147 | 0.0003250 | 2.0003397 g | 1.3E-03 🗸                 |
|                         | 5 g        | 5.00000840 | 4.9985084 | 5.0015084 | 0.0000400 | 4.9999684 g | 1.7E-03 🗸                 |
|                         | 10 g       | 10.0000100 | 9.998010  | 10.002010 | 0.000245  | 9.999765 g  | 2.3E-03 🗸                 |
| Dot                     | 20 g       | 20.0000140 | 19.996014 | 20.004014 | 0.000990  | 20.001004 g | 4.6E-03 🗸                 |
|                         | 50 g       | 49.9999660 | 49.989966 | 50.009966 | 0.000595  | 49.999371 g | 1.1E-02 🗸                 |
|                         | 100 g      | 100.000000 | 99.98000  | 100.02000 | 0.00194   | 99.99806 g  | 2.3E-02 🗸                 |

JJ Calibrations, Inc. certifies that this instrument has been calibrated in accordance with the JJ Calibrations Quality Assurance Manual with the stated procedure using standards that are traceable to the National Institute of Standards and Technology (NIST), or other National Measurement Institutes (NMI's), or by using natural physical constants, intrinsic standards or ratio calibration techniques. The quality system and this certificate are in compliance with ANSI/NCSL Z540-1-1994, ISO/IEC 17025-2005, ISO 10012-1, the ISO 9000 family and QS 9000. The expanded uncertainties of measurements for this calibration are based upon 95% (2 sigma) confidence limits. Unless otherwise stated, a test accuracy ratio (TAR) of 4:1, if achievable, is maintained. The results reported herein apply only to the calibration of the item described above. This report may not be reproduced, except in full, without prior written consent of JJ Calibrations, Inc. JJ Calibrations, Inc. quality system has been assessed and accredited to ISO/IEC 17025:2005.

3 Issued 10/29/2018

Rev # 15

# Thermal Metering System Calibration Y Factor

| Apex       |                                                                                                                                  | Date                                                                                                                                                                                      | 1/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| XC-60-EP   |                                                                                                                                  | y Factor                                                                                                                                                                                  | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0702003    |                                                                                                                                  | Acceptance                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| OMNI-00371 |                                                                                                                                  | 2                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            |                                                                                                                                  |                                                                                                                                                                                           | Curren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            |                                                                                                                                  | Acceptable y                                                                                                                                                                              | v Deviati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7          | Orifice<br>Meter<br>dH@                                                                                                          | Maximum y                                                                                                                                                                                 | Deviatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | N/A                                                                                                                              | Acceptable d                                                                                                                                                                              | H@ De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 07/16/18   |                                                                                                                                  | Maximum dł                                                                                                                                                                                | H@ Dev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| B. Davis   |                                                                                                                                  | Acceptance                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6 months   |                                                                                                                                  | -                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1/16/2019  |                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.000      | cfm                                                                                                                              |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 68         | oF                                                                                                                               |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 29.92      | "Hg                                                                                                                              | Standard                                                                                                                                                                                  | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 30.08      | "Hg                                                                                                                              | Calibrator                                                                                                                                                                                | S/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3 1/1-     | 7/16/2018                                                                                                                        |                                                                                                                                                                                           | Calib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | Apex<br>XC-60-EP<br>0702003<br>OMNI-00371<br>07/16/18<br>B. Davis<br>6 months<br>1/16/2019<br>1.000<br>68<br>29.92<br>30.08<br>7 | Apex<br>XC-60-EP<br>0702003<br>OMNI-00371<br>Orifice<br>Meter<br>dH@<br>N/A<br>07/16/18<br>B. Davis<br>6 months<br>1/16/2019<br>1.000 cfm<br>68 oF<br>29.92 "Hg<br>30.08 "Hg<br>7/16/2019 | Apex     Date       XC-60-EP     y Factor       0702003     Acceptance       OMNI-00371     Acceptable y       Acceptable y     Maximum dl       B. Davis     Acceptable y       I/16/2019     Index       1.000     cfm       68     oF       29.92     "Hg       30.08     "Hg       Calibrator |

#### **Previous Calibration Comparision**

|            |           | Acceptable     |           |
|------------|-----------|----------------|-----------|
| Date       | 1/16/2018 | Deviation (5%) | Deviation |
| y Factor   | 0.997     | 0.04985        | 0.014     |
| Acceptance | Acce      |                |           |

#### **Current Calibration**

| Acceptable y  | 0.020      |  |  |  |  |
|---------------|------------|--|--|--|--|
|               |            |  |  |  |  |
| Maximum y I   | 0.007      |  |  |  |  |
| Acceptable dI | N/A        |  |  |  |  |
| Maximum dH    | N/A        |  |  |  |  |
| Acceptance    | Acceptable |  |  |  |  |

| Reference Standard * |              |                  |                |  |  |  |  |  |
|----------------------|--------------|------------------|----------------|--|--|--|--|--|
| Standard             | Model        | Standard Test Me | eter           |  |  |  |  |  |
| Calibrator           | S/N          | OMNI-00001       |                |  |  |  |  |  |
|                      | Calib. Date  | 30-Oct-17        |                |  |  |  |  |  |
|                      | Calib. Value | 0.9977           | y factor (ref) |  |  |  |  |  |

| Calibration Parameters                   | Run 1   | Run 2   | Run 3 |
|------------------------------------------|---------|---------|-------|
| Reference Meter Pressure ("H2O), Pr      | 0.00    | 0.00    | 0.00  |
| DGM Pressure ("H2O), Pd                  | 3.00    | 1.70    | 1.00  |
| Initial Reference Meter                  | 534.8   | 524     | 529.6 |
| Final Reference Meter                    | 540.302 | 529.514 | 534.7 |
| Initial DGM                              | 0       | 0       | 0     |
| Final DGM                                | 5.505   | 5.593   | 5.22  |
| Temp. Ref. Meter (°F), Tr                | 85.0    | 82.0    | 81.0  |
| Temperature DGM (°F), Td                 | 85.0    | 83.0    | 84.0  |
| Time (min)                               | 28.8    | 35.5    | 47.8  |
| Net Volume Ref. Meter, Vr                | 5.502   | 5.514   | 5.100 |
| Net Volume DGM, Vd                       | 5.505   | 5.593   | 5.22  |
| Gas Meter y Factor =                     | 0.990   | 0.981   | 0.978 |
| Gas Meter y Factor Deviation (from avg.) | 0.007   | 0.002   | 0.005 |
| Orifice dH@                              | N/A     | N/A     | N/A   |
| Orifice dH@ Deviation (from avg.)        | N/A     | N/A     | N/A   |

where:

1. Deviation = |Average value for all runs - current run value|

\*\* 2. y = [Vr x (y factor (ref)) x (Pb + (Pr/13.6)) x (Td + 460)] / [Vd x (Pb + (Pd / 13.6)) x (Tr + 460)]

\*\* 3.  $dH@ = 0.0317 \text{ x Pd} / (Pb (Td + 460)) \text{ x } [ (Tr + 460) \text{ x time}) / Vr ]^2$ 

\* Reference calibration is traceable to NIST through NIST Test # 40674, Kimble ASTM E1272, or NIST traceable laboratory \*\* Equations come from EPA Method 5

The uncertainty of measurement is ±0.14 ft<sup>3</sup>/min. This is based on the reference standard having a TAR (Test Accuracy Ratio) of at least 4:1.

### DIFFERENTIAL PRESSURE GAUGE CALIBRATION DATA SHEET

Instrument to be calibrated: Pressure Transducer

Maximum Range: <u>0-2" WC</u> ID Number: <u>OMNI-00371</u>

Calibration Instrument: <u>Digital Manometer</u> ID Number: <u>OMNI-00395</u>

Date: 7/16/18 By: B. Davis

### This form is to be used only in conjunction with Standard Procedure C-SPC.

| Range of<br>Calibration Point<br>(″WC) | Digital<br>Manometer<br>Input<br>(″WC) | Pressure Gauge<br>Response<br>("WC) | Difference<br>(Input -<br>Response) | % Error of<br>Full Span <sup>*</sup> |
|----------------------------------------|----------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|
| 0-20% Max. Range<br>0 - 0.4            | 0.231                                  | 0.223                               | 0.008                               | 0.4                                  |
| 20-40% Max. Range<br>0.4 - 0.8         | 0.571                                  | 0.564                               | 0.007                               | 0.35                                 |
| 40-60% Max. Range<br>0.8 – 1.2         | 0.991                                  | 0.985                               | 0.006                               | 0.3                                  |
| 60-80% Max. Range<br>1.2 – 1.6         | 1.228                                  | 1.219                               | 0.009                               | 0.45                                 |
| 80-100% Max. Range<br>1.6 – 2.0        | 1.840                                  | 1.827                               | 0.013                               | 0.65                                 |

\*Acceptable tolerance is 4%.

The uncertainty of measurement is  $\pm 0.4$ " WC. This is based on the reference standard having a TAR (Test Accuracy Ratio) of at least 4:1.

| Technician signature: Band Q- | Date: <u>7/16/18</u>      |
|-------------------------------|---------------------------|
| Reviewed by:                  | _ Date: <u>7/20/2</u> 018 |

|                                                                       |                                    | <b></b> |   |         | N = 11          |          |          |            |       |                         |          | ——          |
|-----------------------------------------------------------------------|------------------------------------|---------|---|---------|-----------------|----------|----------|------------|-------|-------------------------|----------|-------------|
|                                                                       | EPA Method 28R, ASTM 2515          |         |   |         |                 |          |          |            |       |                         |          |             |
| BOOTH: TEMPERATURE MONITOR TYPE:                                      |                                    |         |   |         |                 |          |          |            | I     | EQUIPMENT<br>NUMBER:    |          |             |
| Mobile                                                                | Mobile National Instruments Logger |         |   |         |                 |          |          |            | 00    | )371,                   | 00       | )372        |
| REFERENCE METER EQUIPMENT NUMBER: 00373 Calibration Due Date: 8/02/17 |                                    |         |   |         |                 |          |          |            |       |                         |          |             |
|                                                                       |                                    | ED BY:  |   | DATE:   | Т               | A<br>EMI | MBIEN    | IT<br>URE: | B     | BAROMETRIC<br>PRESSURE: |          |             |
| В                                                                     | . Davis                            |         |   | 7/17/18 | 1               |          | 76       | _          | 1     | 30.                     | .12      | ·           |
| Input<br>Temperature                                                  | Input<br>Temperature               |         |   |         |                 |          |          |            |       |                         |          |             |
| (F)                                                                   | Ambient                            | Meter A |   | Meter B | Filt            | ter      | A F      | A Filter B |       | ſunnel                  |          | 3<br>terior |
| 0                                                                     | 0                                  | 0       |   | 0       |                 | 0        |          | 0          | 1     |                         |          |             |
| 100                                                                   | 100                                | 100     |   | 100     | $\Box_{\prime}$ | 00       |          | 100 10     |       | »/                      |          | 100         |
| 300                                                                   | 299                                | 300     |   | 300     | 3               | 300      |          | 299        | 99 30 |                         | 3        | 300         |
| 500                                                                   | 499                                | 500     |   | 500     | 4               | 99       |          | 499        | 50    | 0                       | ځ        | 500         |
| 700                                                                   | 699                                | 700     |   | 700     | 6               | 79       |          | 699        | 70    | 8                       | 7        | 200         |
| 1000                                                                  | 999                                | 1000    |   | 1000    | 9               | 99       |          | 999        | 100   | υ                       | 1        | 000         |
|                                                                       |                                    |         |   |         | FR              |          | FR       |            | Imn   | Cat                     | <br>- T  |             |
| Input (F)                                                             | FB Top                             | Botto   | m | Back    | Left            | F        | Right    | A          | В     |                         | <u> </u> | Stack       |
| 0                                                                     | 1                                  | 1       |   | 1       |                 |          | <u> </u> | -/         | -1    | -/                      |          | 1           |
| 100                                                                   | 101                                | 101     |   | 101     | 100             |          | 100      | 99         | 99    | 99                      |          | 101         |
| 300                                                                   | 300                                | 3 00    | _ | 300     | 300             |          | 300      | 299        | 299   | 299                     | ,        | 300         |
| 500                                                                   | 500                                | 500     |   | 500     | 500             |          | 500      | 499        | 499   | 499                     |          | 500_        |
| 700                                                                   | 700                                | 700     |   | 700     | 700             |          | 700      | 699        | 699   | 699                     |          | 700         |
| 1000                                                                  | 1000                               | 1000    |   | 1000    | 1000            | T        | 1000     | 999        | 999   | 999                     |          | 1000        |

1500 2000

1499 1999

Date: 7/17/18 Technician signature: 4 \_Date: 7/20/18 Reviewed By:

Control No. C-SFK-0004.doc, Effective date: 05/07/2008

# Thermal Metering System Calibration Y Factor

| Manufacturer:                             | Apex       |                         | Date         | 1/1    |
|-------------------------------------------|------------|-------------------------|--------------|--------|
| Model:                                    | XC-60-EP   |                         | y Factor     |        |
| Serial Number:                            | 0702004    |                         | Acceptance   |        |
| OMNI Tracking No.:<br>Calibrated Orifice: | OMNI-00372 |                         |              | Curre  |
|                                           | _          |                         | Acceptable y | Devia  |
| Average Gas Meter y<br>Factor             |            | Orifice<br>Meter<br>dH@ | Maximum y    | Deviat |
| 0.974                                     |            | N/A                     | Acceptable d | H@ D   |
| Calibration Date:                         | 07/16/18   |                         | Maximum dH   | H@ De  |
| Calibrated by:                            | B. Davis   |                         | Acceptance   |        |
| Calibration Frequency:                    | 6 months   |                         |              |        |
| Next Calibration Due:                     | 1/16/2019  |                         |              |        |
| Instrument Range:                         | 1.000      | cfm                     |              |        |
| Standard Temp .:                          | 68         | oF                      |              |        |
| Standard Press .:                         | 29.92      | "Hg                     | Standard     | Mode   |
| Barometric Press., Pb:                    | 30.08      | "Hg                     | Calibrator   | S/N    |
| Signature/Date:                           | Ball-      | 7/16/2018               |              | Calib  |
|                                           |            |                         |              |        |

#### **Previous Calibration Comparision**

| Date       | 1/17/2018 | Acceptable<br>Deviation (5%) | Deviation |
|------------|-----------|------------------------------|-----------|
| y Factor   | 0.981     | 0.04905                      | 0.007     |
| Acceptance | Acce      |                              |           |

#### **Current Calibration**

| Acceptable y  | 0.020      |  |  |  |
|---------------|------------|--|--|--|
|               |            |  |  |  |
| Maximum y I   | 0.008      |  |  |  |
| Acceptable dI | N/A        |  |  |  |
| Maximum dH    | N/A        |  |  |  |
| Acceptance    | Acceptable |  |  |  |

| Reference Standard *               |              |            |                |  |  |  |  |  |
|------------------------------------|--------------|------------|----------------|--|--|--|--|--|
| Standard Model Standard Test Meter |              |            |                |  |  |  |  |  |
| Calibrator                         | S/N          | OMNI-00001 |                |  |  |  |  |  |
|                                    | Calib. Date  | 27-Oct-16  |                |  |  |  |  |  |
|                                    | Calib. Value | 0.9977     | y factor (ref) |  |  |  |  |  |

| Calibration Parameters                   | Run 1   | Run 2   | Run 3 |
|------------------------------------------|---------|---------|-------|
| Reference Meter Pressure ("H2O), Pr      | 0.00    | 0.00    | 0.00  |
| DGM Pressure ("H2O), Pd                  | 3.00    | 1.30    | 0.80  |
| Initial Reference Meter                  | 540.8   | 547.1   | 627.2 |
| Final Reference Meter                    | 547.004 | 552.102 | 633.4 |
| Initial DGM                              | 0       | 0       | 0     |
| Final DGM                                | 6.244   | 5.121   | 6.353 |
| Temp. Ref. Meter (°F), Tr                | 86.0    | 88.0    | 88.0  |
| Temperature DGM (°F), Td                 | 85.0    | 87.0    | 87.0  |
| Time (min)                               | 27.5    | 34.5    | 56.5  |
| Net Volume Ref. Meter, Vr                | 6.204   | 5.002   | 6.200 |
| Net Volume DGM, Vd                       | 6.244   | 5.121   | 6.353 |
| Gas Meter y Factor =                     | 0.982   | 0.970   | 0.970 |
| Gas Meter y Factor Deviation (from avg.) | 0.008   | 0.004   | 0.004 |
| Orifice dH@                              | N/A     | N/A     | N/A   |
| Orifice dH@ Deviation (from avg.)        | N/A     | N/A     | N/A   |

where:

1. Deviation = |Average value for all runs - current run value|

\*\* 2. y = [Vr x (y factor (ref)) x (Pb + (Pr/13.6)) x (Td + 460)] / [Vd x (Pb + (Pd / 13.6)) x (Tr + 460)]

\*\* 3.  $dH@ = 0.0317 \text{ x Pd} / (Pb (Td + 460)) \text{ x } [ (Tr + 460) \text{ x time}) / Vr ]^2$ 

\* Reference calibration is traceable to NIST through NIST Test # 40674, Kimble ASTM E1272, or NIST traceable laboratory \*\* Equations come from EPA Method 5

The uncertainty of measurement is ±0.14 ft<sup>3</sup>/min. This is based on the reference standard having a TAR (Test Accuracy Ratio) of at least 4:1.

### DIFFERENTIAL PRESSURE GAUGE CALIBRATION DATA SHEET

Instrument to be calibrated: Pressure Transducer

Maximum Range: <u>0-2" WC</u> ID Number: <u>OMNI-00372</u>

Calibration Instrument: <u>Digital Manometer</u> ID Number: <u>OMNI-00395</u>

Date: 7/16/18 By: B. Davis

### This form is to be used only in conjunction with Standard Procedure C-SPC.

| Range of<br>Calibration Point<br>(″WC) | Digital<br>Manometer<br>Input<br>(″WC) | Pressure Gauge<br>Response<br>("WC) | Difference<br>(Input -<br>Response) | % Error of<br>Full Span <sup>*</sup> |
|----------------------------------------|----------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|
| 0-20% Max. Range<br>0 - 0.4            | 0.037                                  | 0.042                               | 0.005                               | 0.25                                 |
| 20-40% Max. Range<br>0.4 - 0.8         | 0.512                                  | 0.509                               | 0.003                               | 0.15                                 |
| 40-60% Max. Range<br>0.8 – 1.2         | 1.169                                  | 1.164                               | 0.005                               | 0.25                                 |
| 60-80% Max. Range<br>1.2 – 1.6         | 1.540                                  | 1.533                               | 0.007                               | 0.35                                 |
| 80-100% Max. Range<br>1.6 – 2.0        | 1.772                                  | 1.776                               | 0.004                               | 0.20                                 |

\*Acceptable tolerance is 4%.

The uncertainty of measurement is  $\pm 0.4$ " WC. This is based on the reference standard having a TAR (Test Accuracy Ratio) of at least 4:1.

| Technician signature: B-12- | _Date: <u>7</u> | /16/18    |
|-----------------------------|-----------------|-----------|
| Reviewed by:                | Date:           | 7/20/2018 |

| Temperature Calibration<br>EPA Method 28R, ASTM 2515 |           |             |      |             |            |                    |                |            |          |                         |           |             |
|------------------------------------------------------|-----------|-------------|------|-------------|------------|--------------------|----------------|------------|----------|-------------------------|-----------|-------------|
| BOOTH: TEMPERATURE M                                 |           |             |      |             |            | ONITOR TYPE: EQUIP |                |            |          | PME<br>BEI              | NT<br>R:  |             |
| Mobile                                               |           | Na          | atio | nal Instrur | nents      | Log                | gger           |            | 00       | )371,                   | 00        | 372         |
| REFERENCE ME                                         | TER EQUIP | MENT NUM    | BEF  | R: 00373    | Cali       | ibra               | ation          | Due Da     | ate: 8/  | 02/17                   | ,         |             |
|                                                      |           | ED BY:      |      | DATE:       | Т          | A<br>EMI           | MBIEN<br>PERAT | IT<br>URE: | E        | BAROMETRIC<br>PRESSURE: |           |             |
| В                                                    | Davis     |             |      | 7/17/18     |            |                    | 76             |            |          | 30.                     | .12       |             |
| Input<br>Temperature                                 |           |             |      |             |            |                    |                | ï          |          |                         |           |             |
| (F)                                                  | Ambient   | Meter A     |      | Meter B     | Filt       | Filter A           |                | ilter B    | Tun      | nel                     | FE<br>Int | }<br>terior |
| 0                                                    | 0         | 0           |      | 0           |            | 0                  |                | 0          |          | 1                       |           | 1           |
| 100                                                  | 100       | 100         |      | 100         | 1          | 100                |                | 100        | 10       | 21                      |           | 100         |
| 300                                                  | 299       | 300         |      | 300         | 3          | 300                |                | 299 30     |          | 0                       | 3         | 00          |
| 500                                                  | 499       | 500         |      | 500         | 4          | 99                 |                | 499        | 500      |                         | 5         | 700         |
| 700                                                  | 699       | 700         |      | 700         | 6          | 99                 |                | 699        | 70       | r                       | 7         | 00          |
| 1000                                                 | 999       | 1000        |      | 1000        | 9          | 99                 | 9 999          |            | 1000     |                         | 1         | 000         |
| Input (F)                                            | FB Top    | FB<br>Botto | m    | FB<br>Back  | FB<br>Left | F                  | FB<br>Right    | Imp<br>A   | lmp<br>B | Cat                     |           | Stack       |
| 0                                                    | 1         | 1           |      | 1           | 1          |                    | 1              | -/         | -1       | -/                      |           | 1           |
| 100                                                  | 101       | 101         |      | 101         | 100        |                    | 100            | 99         | 99       | 99                      |           | 101         |
| 300                                                  | 300       | 3 00        | 3 00 |             | 300        |                    | 300            | 299        | 299      | 299                     | ,         | 300         |
| 500                                                  | 500       | 500         |      | 500         | 500        |                    | 500            | 499        | 499      | 499                     |           | 500         |
| 700                                                  | 700       | 700         |      | 700         | 700        |                    | 700            | 699        | 699      | 699                     |           | 700         |
| 1000                                                 | 1000      | 1000        |      | 1000        | 1000       |                    | 1000           | 999        | 999      | 799                     |           | 1000        |

Date: 7/17/18 Technician signature: 4 \_Date: 7/20/18 Reviewed By:

Control No. C-SFK-0004.doc, Effective date: 05/07/2008

Page 1 of 1

# **Certificate of Calibration**

Certificate Number: 659360

Omni-Test Laboratories 13327 NE Airport Way Portland, OR 97230

> Property #: OMNI-00410 User: N/A Department: N/A Make: Dwyer Model: 1430 Serial #: OMNI-00410 Description: Microtector Procedure: SEND TO VENDOR Accuracy: ±0.00025" WC



| PO: 17014<br>Order Date: 09/2<br>Authorized By: N/A | 9<br>2/2017       | Calibration |
|-----------------------------------------------------|-------------------|-------------|
| Calibrated on                                       | : 10/11/2017      |             |
| *Recommended Due                                    | : 10/11/2018      |             |
| Environment                                         | н 19 °С 52 % RH   |             |
| * As Received                                       | Limited           |             |
| * As Returned                                       | Limiteđ           |             |
| Action Taken                                        | Calibrated        |             |
| Technician                                          | 1 <sup>.</sup> 34 |             |

Remarks: \* Many factors may cause the unit to drift out of calibration before the recommended due date. Any reported error is the absolute value between the reference and the unit. Uncertainties include the effects of the unit.

Limited Calibration (est.2016) - Calibrated micrometer head only.

### Standards Used

| <u>Std ID</u> | Manufacturer   | Model     | Nomenclature            | Due Date   | Trace ID |
|---------------|----------------|-----------|-------------------------|------------|----------|
| 541A          | Select         | E8FED2    | 8 Piece Gage Block Set  | 12/14/2017 | 635720   |
| 103A          | Brown & Sharpe | 598-81-14 | Gage Block Set, 81 pc.  | 03/16/2019 | 643452   |
| 368A          | Rutland        | 2225-7081 | 81 Piece Gage Block Set | 06/01/2018 | 649394   |

| Parameter               |            | Meas      | urement D | ata   |        |                           |
|-------------------------|------------|-----------|-----------|-------|--------|---------------------------|
| Measurement Description | Range Unit |           |           |       |        | UUT Uncertainty           |
| Before/After            |            | Reference | Min       | Max   | *Error | Accredited = $\checkmark$ |
| Length                  |            |           |           |       |        |                           |
|                         | Inch       | 0.1300    | 0.129     | 0.131 | 0.000  | 0.130 Inch 1.1E-03 🗸      |
|                         | Inch       | 0.3850    | 0.384     | 0.386 | 0.000  | 0.385 Inch 1.1E-03 🗸      |
|                         | Inch       | 0.6150    | 0.614     | 0.616 | 0.000  | 0.615 Inch 1.1É-03 🗸      |
|                         | Inch       | 0.8700    |           | 0.871 | 0.000  | 0.870 Inch 1.1E-03 🗸      |
|                         | Inch       | 1.0000    | 0.999     | 1.001 | 0.000  | 1.000 Inch 1.1E-03 🗸      |

JJ Calibrations, Inc. certifies that this instrument has been calibrated in accordance with the JJ Calibrations Quality Assurance Manual with the stated procedure using standards that are traceable to the National Institute of Standards and Technology (NIST), or other National Measurement Institutes (NMI's), or by using natural physical constants, intrinsic standards or ratio calibration techniques. The quality system and this certificate are in compliance with ANSI/NCSL Z540-1-1994, ISO/IEC 17025-2005, ISO 10012-1, the ISO 9000 family and QS 9000. The expanded uncertainties of measurements for this calibration are based upon 95% (2 sigma) confidence limits. Unless otherwise stated, a test accuracy ratio (TAR) of 4:1, if achievable, is maintained. The results reported herein apply only to the calibration of the item described above. This report may not be reproduced, except in full, without prior written consent of JJ Calibrations, Inc. JJ Calibrations, Inc. quality system has been assessed and accredited to ISO/IEC 17025:2005.

3 Issued 10/13/2017 Rev #15

Inspector

#### JJ Calibrations, Inc. **Certificate of Calibration** 7007 SE Lake Rd Portland, OR 97267-2105 Certificate Number: 686722 Phone 503.786.3005 FAX 503.786.2994 **Omni-Test Laboratories** 13327 NE Airport Way PO: 180192 Portland, OR 97230 Order Date: 10/22/2018 0723 01 Calibration Authorized By: N/A Property #: OMNI-00410 Calibrated on: 10/30/2018 User: N/A \*Recommended Due: 10/30/2019 Environment: 22 °C 44 % RH Department: N/A Make: Dwyer \* As Received: Limited Model: 1430 \* As Returned: Limited Serial #: OMNI-00410 Action Taken: Calibrated Description: Microtector Technician: 111 Procedure: DCN 500908 Accuracy: ±0.00025" WC Remarks: \* Many factors may cause the unit to drift out of calibration before the recommended due date. Any reported error is the absolute value between the reference and the unit.

Uncertainties include the effects of the unit.

Previous limitation of micrometer head calibrated only continued. .001" reading micrometer head ±.001" (LSD) tolerance applied.

|                         |            | Sta                 | andards U | sed      |            |          |                           |
|-------------------------|------------|---------------------|-----------|----------|------------|----------|---------------------------|
| Std ID Manufacturer     | Model      |                     | Nomena    | Due Date | Trace ID   |          |                           |
| 541A Select             | E8FED2     | Gage Block Set, 8pc |           |          | 12/18/2018 | 663864   |                           |
| Parameter               |            | Meas                | urement D | ata      |            |          |                           |
| Measurement Description | Range Unit |                     |           |          |            | UUT      | Uncertainty               |
| Before/After            |            | Reference           | Min       | Max      | *Error     |          | Accredited = $\checkmark$ |
| Length                  |            |                     |           |          |            |          |                           |
|                         | Inch       | 0.1300              | 0.129     | 0.131    | 0.001      | 0.129 In | ch 1.1E-03 🗸              |
|                         | Inch       | 0.3850              | 0.384     | 0.386    | 0.001      | 0.384 In | ch 1.1E-03 🗸              |
|                         | Inch       | 0.6150              | 0.614     | 0.616    | 0.001      | 0.614 In | ch 1.1E-03 🗸              |
|                         | Inch       | 0.8700              | 0.869     | 0.871    | 0.001      | 0.869 In | ch 1.1E-03 🗸              |
|                         | Inch       | 1.0000              | 0.999     | 1.001    | 0.001      | 0.999 In | ch 1.1E-03 🗸              |
|                         |            |                     |           |          |            |          |                           |

JJ Calibrations, Inc. certifies that this instrument has been calibrated in accordance with the JJ Calibrations Quality Assurance Manual with the stated procedure using standards that are traceable to the National Institute of Standards and Technology (NIST), or other National Measurement Institutes (NMI's), or by using natural physical constants, intrinsic standards or ratio calibration techniques. The quality system and this certificate are in compliance with ANSI/NCSL Z540-1-1994, ISO/IEC 17025-2005, ISO 10012-1, the ISO 9000 family and QS 9000. The expanded uncertainties of measurements for this calibration are based upon 95% (2 sigma) confidence limits. Unless otherwise stated, a test accuracy ratio (TAR) of 4:1, if achievable, is maintained. The results reported herein apply only to the calibration of the item described above. This report may not be reproduced, except in full, without prior written consent of JJ Calibrations, Inc. JJ Calibrations, Inc. quality system has been assessed and accredited to ISO/IEC 17025:2005.

Rev # 15

Issued 10/31/2018

3

Inspector

| OMNI Track # | OMNI-00594 |
|--------------|------------|
|              |            |

### Equipment Name/Description CAI ZRE-4 Gas Analyzer

Equipment S/N: N5F0112

Comments CO2, O2, and dual range CO gas analyzer.

Х

NO

Status Active, calibrate prior to use.

Part # ZRE-4

Reference Standard: YES

(Check 'X' for answer)

Location of Equipment: Portable gas cart.

Calibration Vendor OMNI in house

Type of Calibration Calibrate Prior to use.

Calibration Period (Months) N/A

Date of Last Calibration N/A

Date of Next Calibration N/A

Do the following:

- 1) Complete Calibration documentation
- 2) Complete top half of this form
- 3) Attach appropriate calibration forms and save in following location

\\omni-serv\Test Equipment\Equipment\OMNI-XXXXX - Equipment Name

- 4) Repopulate database with updated information
- 5) Print, laminate and adhere calibration tag to equipment

Verify before use OMNI-00594 Gas Analyzer

Verify before use OMNI-00594 Gas Analyzer

| Calibration Service Record |          |                              |                             |  |  |  |
|----------------------------|----------|------------------------------|-----------------------------|--|--|--|
| Date                       | Ву       | Results                      | Date of next<br>Calibration |  |  |  |
| 7/12/2018                  | B. Davis | Installed a new Vane as per  | 1/12/2019                   |  |  |  |
|                            | BQ       | manufacturer's instructions. |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |
|                            |          |                              |                             |  |  |  |

# VWR Temperature Hygrometer Calibration Procedure and Data Sheet

Frequency: Every Two Years

- Step 1: Locate NIST traceable standard.
- Step 2: Place unit to be calibrated, tracking No. <u>OMNI-00592</u>, inside OMNI desiccate box on the same shelf with the NIST traceable standard.
- Step 3: After a period of not less than four hours record the temperature and humidity of both units in the spaces provide below.
- Step 4: If the unit to be calibrated matches the NIST standard within  $\pm$  4%, it is acceptable. If not, the unit needs to be sent to a repair company or replaced.

#### Verification Data:

| Date: <u>1/8/2018</u> Technician: <u>BDavis</u>                                      |
|--------------------------------------------------------------------------------------|
| Time in desiccate: 09/0 Recording time: /335                                         |
| NIST Standard Temperature: <u>28.3</u> °F NIST Standard Humidity: <u>74.5</u>        |
| Test Unit Temperature Reading: <u>25.9</u> °F Test Unit Humidity Reading: <u>793</u> |
| Test unit OMNI- $00592$ is X or was not within acceptable limits.                    |
| Technician Signature: Barado Alexandre                                               |
| Comments: Full scale of OMNI-00572 is 90% RH, with a difference of                   |
| 2.9 this gives a error percentage of 3.22 %. This value is will in the allowable 4%. |
|                                                                                      |
|                                                                                      |
|                                                                                      |
|                                                                                      |

# **Certificate of Calibration**

Certificate Number: 681844

Omni-Test Laboratories 13327 NE Airport Way Portland, OR 97230

Property #: OMNI-00637

Make: Mettler Toledo

Description: Analytical Scale, 120g

Model: MS104TS/00

Serial #: B729400181

Procedure: DCN 500887 Accuracy: ±0.0005g

User: N/A

Department: N/A



**JJ Calibrations, Inc.** 7007 SE Lake Rd Portland, OR 97267-2105 Phone 503.786.3005 FAX 503.786.2994

OnSite

PO: 180176 Order Date: 08/07/2018 Authorized By: N/A Calibrated on: 08/07/2018 \*Recommended Due: 02/07/2019 Environment: 22 °C 38 % RH \* As Received: Out of Tolerance \* As Returned: Within Tolerance Action Taken: Adjusted Technician: 111 ACCHEDITED 0723.01

Calibration

Remarks: \* Many factors may cause the unit to drift out of calibration before the recommended due date. Any reported error is the absolute value between the reference and the unit. Uncertainties include the effects of the unit.

Balance went into over range at max capacity. Adjusted balance to bring all points back into tolerance.

|                                       |            | S         | tandards    | Used            |          |           |                           |
|---------------------------------------|------------|-----------|-------------|-----------------|----------|-----------|---------------------------|
| Std ID Manufacturer                   | Model      |           | <u>Nome</u> | <u>Due Date</u> | Trace ID |           |                           |
| 256A Rice Lake                        | W0133K     |           | Mass        | 05/30/2019      | 660578   |           |                           |
| Parameter                             |            | Mea       | surement    | Data            |          |           |                           |
| Measurement Description               | Range Unit |           |             |                 |          | UUT       | Uncertainty               |
| Before                                |            | Reference | Min         | Max             | *Error   |           | Accredited = 🗸            |
| Force                                 |            |           |             |                 |          |           |                           |
|                                       | g          | 10.00000  | 9.9995      | 10.0005         | 0.0004   | 10.0004 g | 5.7E-04 ✓                 |
|                                       | g          | 30.00000  | 29.9995     | 30.0005         | 0.0004   | 30.0004 g | 5.7Ē-04 √                 |
|                                       | g          | 60.00000  | 59.9995     | 60.0005         | 0.0004   | 60.0004 g | 5.7E-04 🗸                 |
|                                       |            | 90.00000  | 89.9995     | 90.0005         | 0.0005   | 90.0005 g | 5.7Ē-04 🗸                 |
|                                       | g          | 120.00000 | 119.9995    | 120.0005        | 120.0000 | 0.0000 g  | 5.7Ë-04 ✓                 |
| After                                 |            | Reference | Min         | Max             | *Error   |           | Accredited = $\checkmark$ |
|                                       | g          | 10.00000  | 9.9995      | 10.0005         | 0.0000   | 10.0000 g | 5.7E-04 √                 |
|                                       | g          | 30.00000  | 29.9995     | 30.0005         | 0.0001   | 29.9999g  | 5.7E-04 🗸                 |
|                                       | g          | 60.00000  | 59.9995     | 60.0005         | 0.0001   | 60.0001 g | 5.7Ē-04 🗸                 |
| · · · · · · · · · · · · · · · · · · · | g          | 90.00000  | 89.9995     | 90.0005         | 0.0002   | 89.9998 g | 5.7E-04 🗸                 |
|                                       | <u>g</u>   | 120.00000 | 119.9995    | 120.0005        | 0.0002   | 119.9998g | 5.7Ē-04 🗸                 |
|                                       |            |           |             |                 |          |           |                           |

JJ Calibrations, Inc. certifies that this instrument has been calibrated in accordance with the JJ Calibrations Quality Assurance Manual with the stated procedure using standards that are traceable to the National Institute of Standards and Technology (NIST), or other National Measurement Institutes (NMI's), or by using natural physical constants, intrinsic standards or ratio calibration techniques. The quality system and this certificate are in compliance with ANSI/NCSL Z540-1-1994, ISO/IEC 17025-2005, ISO 10012-1, the ISO 9000 family and QS 9000. The expanded uncertainties of measurements for this calibration are based upon 95% (2 sigma) confidence limits. Unless otherwise stated, a test accuracy ratio (TAR) of 4:1, if achievable, is maintained. The results reported herein apply only to the calibration of the item described above. This report may not be reproduced, except in full, without prior written consent of JJ Calibrations, Inc. JJ Calibrations, Inc. quality system has been assessed and accredited to ISO/IEC 17025:2005.

Rev #15

Reviewer

3 Issued 08/09/2018 Rev #



# Calibration complies with ISO/IEC 17025, ANSI/NCSL Z540-1, and 9001



#### Traceable® Certificate of Calibration for Digital Barometer

Manufactured for and distributed by : Control Company "Drawer 58307, Houston, TX, 77258, USA"

#### Instrument Identification:

| Model: 6                                | 530,           |             | S/N: 181062211                                      |                                    |                                                        |                                                                                                                 | Manufacturer: Control Company |                                                            |       |                                         |  |
|-----------------------------------------|----------------|-------------|-----------------------------------------------------|------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------|-------|-----------------------------------------|--|
| Standard                                | ds/Equipm      | ent:        | · · · · · · · · · · · · · · · · · · ·               |                                    |                                                        |                                                                                                                 |                               | <u></u>                                                    |       |                                         |  |
| a a a dina a ana ana                    | Descr          | iption      |                                                     | Serial Num                         | <u>ıber</u>                                            | Due                                                                                                             | Date                          | NIST Traceable Reference                                   |       |                                         |  |
|                                         | Digital Ba     | arometer    |                                                     | D4540001                           |                                                        | 09 Oc                                                                                                           | xt 2018                       | 1000415948                                                 |       |                                         |  |
| a station (generally                    | Digital The    | rmometer    | a viennesse soon die voorseere enderende            | 130070752                          | n e un en allemantades politikelt i Contes Managerona. | 02 Ma                                                                                                           | ar 2018                       | 4000-8360837                                               |       |                                         |  |
| ana ang ang ang ang ang ang ang ang ang | Chilled Mirror | Hygrometer  | an a tha tha an | 44654/2H373                        | 57                                                     | 02 No                                                                                                           | v 2019                        | ann ann an an an an an an an an 1000 féinn an dhlannar 140 | 15478 | 97999-99999-99999-99999-999-999-999-999 |  |
|                                         | Climate C      | Chamber     | ng Minus ng Sulta ng Shina ng Kangalan (Minupagan)  | W613.0046                          |                                                        | of the angles when it is a mapped and the second of the second second second second second second second second |                               |                                                            |       |                                         |  |
| Certifica                               | te Informa     | tion:       |                                                     |                                    |                                                        |                                                                                                                 |                               |                                                            |       |                                         |  |
| Technician: 57 Proce                    |                |             | Procedure                                           | edure: CAL-31 Cal Date: 26 Feb 201 |                                                        |                                                                                                                 | <sup>-</sup> eb 2018          | 8 Cal Due Date: 26 Feb 2020                                |       |                                         |  |
| Test Cond                               | litions: 54    | .9%RH 22.8  | 3°C 1023i                                           | mBar                               |                                                        |                                                                                                                 |                               |                                                            |       |                                         |  |
| Calibratio                              | on Data: (N    | New Instrum | ient)                                               |                                    |                                                        |                                                                                                                 |                               |                                                            |       |                                         |  |
| Unit(s)                                 | Nominal        | As Found    | in Tol                                              | Nominal                            | As Left                                                | In Tol                                                                                                          | Min                           | Max                                                        | ±U    | TUR                                     |  |
| %RH                                     | N.A.           | N.A.        | 5000                                                | 51.21                              | 52                                                     | Y                                                                                                               | 49                            | 55                                                         | 0.74  | >4:1                                    |  |
| °C                                      | N.A.           | N.A.        |                                                     | 24.55                              | 24.3                                                   | Y                                                                                                               | 24.15                         | 24.96                                                      | 0.051 | >4:1                                    |  |
| mb/hPa                                  | N.A.           | N.A.        |                                                     | 1010.30                            | 1010                                                   | Y                                                                                                               | 1007                          | 1015                                                       | 0.62  | >4:1                                    |  |
| mb/hPa                                  | N.A.           | N.A.        |                                                     | 806.75                             | 806                                                    | - Y                                                                                                             | 803                           | 811                                                        | 0.62  | >4:1                                    |  |
| mb/hPa                                  | N.A.           | N.A.        |                                                     | 908.50                             | 908                                                    | Y                                                                                                               | 905                           | 913                                                        | 0.62  | >4:1                                    |  |

## This certificate indicates Traceability to standards provided by (NIST) National Institute of Standards and Technology and/or a National Standards Laboratory.

A Test Uncertainty Ratio of at least 4:1 is maintained unless otherwise stated and is calculated using the expanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is calculated in accordance with the ISO "Guide to the Expression of Uncertainty in Measurement : (GUM). The uncertainty represents an expanded uncertainty using a coverage factor k=2 to approximate a 95% confidence level. In tolerance conditions are based on test results falling within specified limits with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item calibrated. This certificate shall not be reproduced except in full, without written approval of Control Company.

Nominal=Standard's Reading; As Left=Instrument's Reading; In Tol=In Tolerance; Min/Max=Acceptance Range; ± U=Expanded Measurement Uncertainty; TUR=Test Uncertainty Ratio; Accuracy=±(Max-Min)/2; Min=As Left Nominal(Rounded) – Tolerance; Max= As Left Nominal(Rounded) + Tolerance;

Rice Rodriguez

Nicol Rodriguez, Quality Manager

Aaron Judice, Technical Manager

#### **Maintaining Accuracy:**

In our opinion once calibrated your Digital Barometer should maintain its accuracy. There is no exact way to determine how long calibration will be maintained. Digital Barometer change little, if any at all, but can be affected by aging, temperature, shock, and contamination.

#### **Recalibration:**

For factory calibration and re-certification traceable to National Institute of Standards and Technology contact Control Company.

#### CONTROL COMPANY 12554 Galveston RD Suite B230 Webster TX USA 77598 Phone 281 482-1714 Fax 281 482-9448 sales@control3.com www.control3.com

Control Company is an ISO/IEC 17025:2005 Calibration Laboratory Accredited by (A2LA) American Association for Laboratory Accreditation, Certificate No. 1750.01. Control Company is ISO 9001:2008 Quality Certified by DNV GL, Certificate No. CERT-01805-2006-AQ-HOU-RvA. International Laboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangement (MRA). Hearth & Home Technologies, LLC Model: Classic Bay 1200-C Project: 0061PS013E

# 3.3 - Example Calculations

OMNI-Test Laboratories, Inc.

### Equations and Sample Calculations - ASTM E2779 & E2515

| Manufacturer: | Hearth & Home      |
|---------------|--------------------|
| Model:        | Classic Bay 1200-C |
| Run:          | 1                  |
| Category:     | Integrated         |

Equations used to calculate the parameters listed below are described in this appendix. Sample calculations are provided for each equation. The raw data and printout results from a sample run are also provided for comparison to the sample calculations.

 $M_{Bdb}$  - Weight of test fuel burned during test run, dry basis, kg

 $M_{BSidb}$  - Weight of test fuel burned during test run segment *i*, dry basis, kg

BR - Average dry burn rate over full integrated test run, kg/hr

 $BR_{si}$  - Average dry burn rate over test run segment i, kg/hr

 $V_{s}$  - Average gas velocity in the dilution tunnel, ft/sec

 $\mathbf{Q}_{sd}$  - Average gas flow rate in dilution tunnel, dscf/hr

 $V_{\text{m(std)}}$  - Volume of Gas Sampled Corrected to Dry Standard Conditions, dscf

- m<sub>n</sub> Total Particulate Matter Collected, mg
- Cs Concentration of particulate matter in tunnel gas, dry basis, corrected to standard conditions, g/dscf

 $E_{T}\,$  - Total Particulate Emissions, g

PR - Proportional Rate Variation

 $PM_R$  - Average particulate emissions for full integrated test run, g/hr

 $PM_F$  - Average particulate emission factor for full integrated test run, g/dry kg of fuel burned

 $M_{Bdb}$  - Weight of test fuel burned during test run, dry basis, kg

ASTM E2779 equation (1)

 $M_{Bdb} = (M_{Swb} - M_{Ewb})(100/(100 + FM))$ 

Where,

| FM               | = | average fuel moisture of test fuel, % dry basis                   |
|------------------|---|-------------------------------------------------------------------|
| $M_{Swb}$        | = | weight of test fuel in hopper at start of test run, wet basis, kg |
| M <sub>Ewb</sub> | = | weight of test fuel in hopper at end of test run, wet basis, kg   |

Sample Calculation:

5.98 %  $M_{Swb} = 15.5$  lbs  $M_{Ewb} = 0.0$  lbs 0.4536 = Converstion factor from lbs to kg

 $M_{Bdb} = [(15.5 \times 0.4536) - (0.0 \times 0.4536)] (100/(100 + 5.98))$ 

 $M_{Bdb} = 6.63 \text{ kg}$ 

 $M_{BSidb}$  - Weight of test fuel burned during test run segment *i*, dry basis, kg ASTM E2779 equation (2)

 $M_{BSidb} = (MS_{Siwb} - M_{ESiwb})(100/(100 + FM))$ 

Where,

 $M_{SSiwb}$  = weight of test fuel in hopper at start of test run segment *i*, wet basis, kg

 $M_{ESiwb}$  = weight of test fuel in hopper at end of test run segment *i*, wet basis, kg

Sample Calculation (from medium burn rate segment):

FM = 5.98 %  $M_{SSiwb} = 10.5 \text{ lbs}$   $M_{ESiwb} = 5.8 \text{ lbs}$  0.4536 = Converstion factor from lbs to kg

 $M_{BSidb} = [(10.5 \times 0.4536) - (5.8 \times 0.4536)](100/(100 + 6))$ 

 $M_{BSidb} = 2$  kg

**BR** - Average dry burn rate over full integrated test run, kg/hr ASTM E2779 equation (3)

BR = 
$$\frac{60 \text{ M}_{\text{Bdb}}}{\Theta}$$

Where,

 $\theta$  = Total length of full intergrated test run, min

Sample Calculation:

| $M_{Bdb}$ | = | 6.63 | kg    |
|-----------|---|------|-------|
| θ         | = | 360  | min   |
|           |   |      |       |
|           |   | 60 x | 6.63  |
| BR        | = | 360  | 0     |
|           |   |      |       |
| BR        | = | 1.11 | kg/hr |

 ${\sf BR}_{\sf Si}$  - Average dry burn rate over test run segment i , kg/hr

ASTM E2779 equation (4)

$$BR_{Si} = \frac{60 M_{BSidb}}{\theta_{Si}}$$

Where,

$$\theta_{Si} = Total length of test run segment i, min$$

Sample Calculation (from medium burn rate segment):

BR =

$$M_{BSidb} = 2.01 \text{ kg}$$
  

$$\theta = 120 \text{ min}$$
  

$$\frac{60 \times 2.01}{120}$$
  
BR = 120

1.01 kg/hr

Control No. P-SFDK-0004, Effective Date 9/26/2018

 $V_s$  - Average gas velocity in the dilution tunnel, ft/sec ASTM E2515 equations (9)

$$V_{s} = F_{p} \times K_{p} \times C_{P} \times \left(\sqrt{\Delta P}\right)_{avg} \times \sqrt{\frac{T_{s}}{P_{s} \times M_{s}}}$$

#### Where:

| $F_p$              | = | djustment factor for center of tunnel pitot tube placement, Fp $\xrightarrow{V_{strav}}$ , ASTM E2515 Equation (1)<br>$V_{scent}$ |
|--------------------|---|-----------------------------------------------------------------------------------------------------------------------------------|
| V <sub>scent</sub> | = | Dilution tunnel velocity calculated after the multi-point pitot traverse at the center, ft/sec                                    |
| V <sub>strav</sub> | = | Dilution tunnel velocity calculated after the multi-point pitot traverse, ft/sec                                                  |
| $k_{p}$            | = | Pitot tube constant, 85.49                                                                                                        |
| $C_{p}$            | = | Pitot tube coefficient: 0.99, unitless                                                                                            |
| ∆P*                | = | Velocity pressure in the dilution tunnel, in $H_2O$                                                                               |
| Ts                 | = | Absolute average gas temperature in the dilution tunnel, $^{\circ}$ R; ( $^{\circ}$ R = $^{\circ}$ F + 460)                       |
| $P_{s}$            | = | Absolute average gas static pressure in diltuion tunnel, = $P_{bar} + P_g$ , in Hg                                                |
| $\mathbf{P}_{bar}$ | = | Barometric pressure at test site, in. Hg                                                                                          |
| $P_g$              | = | Static pressure of tunnel, in. $H_20$ ; (in Hg = in $H_20/13.6$ )                                                                 |
| $M_{\rm s}$        | = | **The dilution tunnel wet molecular weight; $M_s$ = 28.78 assuming a dry weight of 29 lb/lb-mole                                  |
|                    |   |                                                                                                                                   |

#### Sample calculation:

$$Fp = \frac{26.82}{28.20} = 0.951$$

$$V_{s} = 0.951 \times 85.49 \times 0.99 \times 0.414 \times \left( \frac{95.5 + 460}{(28.65 + \frac{-1.13}{13.6}) \times 28.78} \right)^{1/2}$$

$$V_{s} = 27.42 \text{ ft/s}$$

\*The ASTM test standard mistakenly has the square root of the average delta p instead of the average of the square root of delta p. The current EPA Method 2 is also incorrect. This was verified by Mike Toney at EPA.

\*\*The ASTM test standard mistakenly identifies Ms as the dry molecular weight. It should be the wet molecular weight as indicated in EPA Method 2.

 $\mathbf{Q}_{sd}$  - Average gas flow rate in dilution tunnel, dscf/hr

ASTM E2515 equation (3)

$$Q_{sd} = 3600 \times (1 - B_{ws}) \times v_s \times A \times \frac{T_{std}}{T_s} \times \frac{P_s}{P_{std}}$$

Where:

| 3600                      | = | Conversion from seconds to hours (ASTM method uses 60 to convert in minutes)                             |
|---------------------------|---|----------------------------------------------------------------------------------------------------------|
| $B_{ws}$                  | = | Water vapor in gas stream, proportion by volume; assume 2%                                               |
| А                         | = | Cross sectional area of dilution tunnel, ft <sup>2</sup>                                                 |
| $T_{std}$                 | = | Standard absolute temperature, 528 °R                                                                    |
| $\mathbf{P}_{\mathbf{s}}$ | = | Absolute average gas static pressure in diltuion tunnel, = $P_{bar}$ + $P_{g}$ , in Hg                   |
| $T_{s}$                   | = | Absolute average gas temperature in the dilution tunnel, $\degree$ R; ( $\degree$ R = $\degree$ F + 460) |
| $\mathbf{P}_{std}$        | = | Standard absolute pressure, 29.92 in Hg                                                                  |
|                           |   |                                                                                                          |

| Sample calculation: |                                 |                |   |            | 28 65 + - | -1.13 |
|---------------------|---------------------------------|----------------|---|------------|-----------|-------|
| 0 -                 | $2600 \times (1 - 0.02) \times$ | 27 42 v 0 1064 | v | 528        | 20.03 + - | 13.6  |
| Q <sub>sd</sub> –   | 5000 X (1 - 0.02) X             | 27.42 X 0.1904 | ~ | 95.5 + 460 | 29.9      | 2     |

 $Q_{sd} = 17238.7 \text{ dscf/hr}$ 

 $V_{\text{m(std)}}$  - Volume of Gas Sampled Corrected to Dry Standard Conditions, dscf

### ASTM E2515 equation (6)

$$V_{m(std)} = K_1 \times V_m \times Y \times \frac{P_{bar} + \left(\frac{\Delta H}{13.6}\right)}{T_m}$$

Where:

| <b>K</b> <sub>1</sub> | = | 17.64 °R/in. Hg                                                                        |
|-----------------------|---|----------------------------------------------------------------------------------------|
| $V_{\rm m}$           | = | Volume of gas sample measured at the dry gas meter, dcf                                |
| Y                     | = | Dry gas meter calibration factor, dimensionless                                        |
| $P_{bar}$             | = | Barometric pressure at the testing site, in. Hg                                        |
| ΔH                    | = | Average pressure differential across the orifice meter, in. $\mathrm{H}_{2}\mathrm{O}$ |
| $T_m$                 | = | Absolute average dry gas meter temperature, °R                                         |
|                       |   |                                                                                        |

Sample Calculation:

Using equation for Train 1:  

$$V_{m(std)} = 17.64 \times 59.449 \times 0.997 \times \frac{(28.65 + \frac{1.98}{13.6})}{(75.9 + 460)}$$

 $V_{m(std)} = 56.175 \text{ dscf}$ 

| Using equa            | tion for T | ( 70 4 | 28 65 + | 1.77 |       |   |   |           |      |     |
|-----------------------|------------|--------|---------|------|-------|---|---|-----------|------|-----|
| V <sub>m(std)</sub> = | 17.64      | х      | 63.778  | х    | 0.981 | х | ſ | ( 20.05 + | 13.6 | - ) |
|                       |            |        |         |      |       |   | ( | 75.4 +    | 460  | )   |

 $V_{m(std)} = 59.333 \text{ dscf}$ 

| Using equat           | tion for a | ( | 20 45 | 0.00 | `` |   |   |                  |      |    |
|-----------------------|------------|---|-------|------|----|---|---|------------------|------|----|
| V <sub>m(std)</sub> = | 17.64      | х | 0.00  | х    | 0  | х | ( | <u> 28.03</u> +- | 13.6 | -, |
|                       |            |   |       |      |    |   | ( | 69.9 +           | 460  | )  |

 $V_{m(std)} = 0.000 \text{ dscf}$ 

Control No. P-SFDK-0004, Effective Date 9/26/2018

 $\ensuremath{\mathsf{m}_{\mathsf{n}}}\xspace$  - Total Particulate Matter Collected,  $\ensuremath{\mathsf{mg}}\xspace$ 

ASTM E2515 Equation (12)

$$m_n = m_p + m_f + m_g$$

Where:

| m <sub>p</sub> | = | mass of particulate matter from probe, mg        |
|----------------|---|--------------------------------------------------|
| m <sub>f</sub> | = | mass of particulate matter from filters, mg      |
| mg             | = | mass of particulate matter from filter seals, mg |

Sample Calculation:

Using equation for Train 1 (first hour):  $m_n = 0.0 + 0.7 + 0.0$ 

 $m_n = 0.7 \text{ mg}$ 

Using equation for Train 1 (remainder):

 $m_n = 0.1 + 1.8 + 0.8$  $m_n = 2.7 \text{ mg}$ 

Train 1 Aggregate = 3.4 mg

Using equation for Train 2:

 $m_n = 0.0 + 2.8 + 0.5$ 

m<sub>n</sub> = **3.3** mg

 $C_s$  - Concentration of particulate matter in tunnel gas, dry basis, corrected to standard conditions, g/dscf ASTM E2515 equation (13)

$$\mathbf{C}_{s} = \mathbf{K}_{2} \times \frac{\mathbf{m}_{n}}{\mathbf{V}_{m(std)}}$$

Where:

| K <sub>2</sub>      | = | Constant, 0.001 g/mg                                                 |
|---------------------|---|----------------------------------------------------------------------|
| m <sub>n</sub>      | = | Total mass of particulate matter collected in the sampling train, mg |
| V <sub>m(std)</sub> | = | Volume of gas sampled corrected to dry standard conditions, dscf     |

Sample calculation:

For Train 1:

$$C_s = 0.001 \text{ x} - \frac{3.4}{56.17}$$

For Train 2

$$C_s = 0.001 \times \frac{3.3}{59.33}$$

C<sub>s</sub> = **5.56E-05** g/dscf

For Ambient Train

 $C_r = 0.001 \times \frac{0.0}{0.00}$ 

Control No. P-SFDK-0004, Effective Date 9/26/2018

### $E_T$ - Total Particulate Emissions, g

ASTM E2515 equation (15)

$$\boldsymbol{E}_{T} = (\boldsymbol{c}_{s} - \boldsymbol{c}_{r}) \times \boldsymbol{Q}_{std} \times \boldsymbol{\theta}$$

Where:

| $C_s$                     | = | Concentration of particulate matter in tunnel gas, g/dscf |
|---------------------------|---|-----------------------------------------------------------|
| $C_r$                     | = | Concentration particulate matter room air, g/dscf         |
| $\mathbf{Q}_{\text{std}}$ | = | Average dilution tunnel gas flow rate, dscf/hr            |
| θ                         | = | Total time of test run, minutes                           |

### Sample calculation:

For Train 1  $E_T = ( 0.000061 - 0.000000 ) \times 17238.7 \times 360 /60$   $E_T = 6.26$  g For Train 2  $E_T = ( 0.000056 - 0.000000 ) \times 17238.7 \times 360 /60$ 

 $E_T = ( 0.000056 - 0.000000 ) \times 17238.7 \times 360 /60$  $E_T = 5.75$  g

### Average

Total emission values shall not differ by more than 7.5% from the total average emissions

| 7.5% of the average = | <u>0.45</u> |
|-----------------------|-------------|
| Train 1 difference =  | <u>0.25</u> |
| Train 2 difference =  | <u>0.25</u> |

### PR - Proportional Rate Variation

ASTM E2515 equation (16)

$$PR = \left[\frac{\theta \times V_{mi} \times V_{s} \times T_{m} \times T_{si}}{\theta_{i} \times V_{m} \times V_{si} \times T_{mi} \times T_{s}}\right] \times 100$$

Where:

- $\theta$  = Total sampling time, min
- $\theta_i$  = Length of recording interval, min
- V<sub>mi</sub> = Volume of gas sample measured by the dry gas meter during the "ith" time interval, dcf
- $V_m$  = Volume of gas sample as measured by dry gas meter, dcf
- $V_{si}$  = Average gas velocity in the dilution tunnel during the "ith" time interval, ft/sec
- $V_s$  = Average gas velocity in the dilution tunnel, ft/sec
- $T_{mi}$  = Absolute average dry gas meter temperature during the "ith" time interval,  $^{\circ}R$
- $T_m$  = Absolute average dry gas meter temperature, <sup>o</sup>R
- $T_{si}$  = Absolute average gas temperature in the dilution tunnel during the "ith" time interval,  ${}^{\circ}R$
- $T_s$  = Absolute average gas temperature in the dilution tunnel, <sup>o</sup>R

Sample calculation (for the first 1 minute interval of Train 1):

PR = <u>100</u> %

 $PM_R$  - Average particulate emissions for full integrated test run, g/hr

ASTM E2779 equation (5)

$$PM_R = 60 (E_T/\theta)$$

Where,

 $E_T$  = Tota particulate emissions, grams

 $\theta$  = Total length of full intergrated test run, min

Sample Calculation:

| $E_T$ (Dual train average) | = 6.0   | 1 g      |
|----------------------------|---------|----------|
| θ                          | = 36    | 0 min    |
| PM <sub>R</sub> = 60       | x ( 6.0 | 1 / 360) |

 $PM_R = 1.00 \text{ g/hr}$ 

 $PM_F$  - Average particulate emission factor for full integrated test run, g/dry kg of fuel burned ASTM E2779 equation (6)

$$PM_F = E_T/M_{Bdb}$$

Where,

 $E_{T}$  = Tota particulate emissions, grams

 $M_{Bdb}$  = Weight of test fuel burned during test run, dry basis, kg

Sample Calculation:

 $E_{T}$  (Dual train average) = 6.01 g  $M_{Bdb}$  = 6.63 kg  $PM_{F}$  = 6.01 / 6.63 )

 $PM_F = 0.91 \text{ g/kg}$ 

# Appendix A – Labeling & Owner's Manual



CAUTION: HOT WHILE IN OPERATION DO NOT TOUCH. KEEP CHILDREN, CLOTHING AND FURNITURE AWAY. CONTACT MAY CAUSE SKIN BURNS. SEE NAMEPLATE AND INSTRUCTIONS. Operate this unit with fuel hopper lid closed. Failure to do so may result in emissions products' combustion from the hopper under certain conditions. Maintain hopper seal in good condition. Do not over fill the hopper. ON: CHAUD LORS DE L'OPÉRATION. NE PAS TOUCHER. GARDEZ LES ENFANTS ET LES VÊTEMENTS LOIN DE L'ESPACE DÉSIGNÉ DE L'INSTALLATION. LE CONTACT PEUT CAUSER DES BRÛLURES À LA PEAU. VOIR L'ÉTIQUETTE ET LES INSTRUCTIONS. Opérez cet appareil avec le couvercle de la trémie fermé. Le défaut de ne pas suivre les instructions peut résulter, sous certaines conditions, en une combustion des émissions des produits venant de la trémie. Ne pas remplir la trémie trop pleine.

beneath the heater

dessous de l'appareil.



Report / Rapport Ouadra-Fire 061-S-21-4 0061PS013E

CB1200-C

Serial No. / Nº de série

des cendres fermées hermétiquement durant l'opération.

US

operation. Keep viewing and ash removal doors tightly closed during operation.

POUR USAGE AVEC LES BOULETTES DE BOIS. N'utiliser aucun autre genre de combustible.

Conforms to ASTM Std E1509-12. Certified to ULC S627-00. Room Heating Pellet BurningType, (UM)

power cord away from unit. Do not route cord under or in front of appliance. Do not obstruct the space

DANGER: Risk of electrical shock. Disconnect power supply before servicing. Replace glass only with 5mm ceramic. To start, turn dial control to desired setting and set thermostat above room temperature, the

temperature. For further instruction refer to owner's manual. Keep viewing doors tightly closed during

Conforme à la norme ASTM E1509-12 Std. Certifié à la norme ULC S627-00. Room Heating Pellet Burning Type, (UM) 84-HUD

Puissance de Rendement : 41,120 Btu's/hr. Puissance Électrique : 115 VAC, 60 Hz, Début 3.75 Amps, Courir 1.88 Amps, Éloignez le fil électrique de l'appareil. Ne pas faire passer le fil électrique au dessus ou en dessous de l'appareil. Ne pas bloquer l'espace au

DANGER : Il v a risque de décharge électrique. Déconnectez le fil électrique de la prise de contact avant le service. Remplacez la

ambiante. Pour des instructions supplémentaires, référez vous au manuel du propriétaire. Gardez la porte d'ouverture et la porte

vitre seulement avec une vitre céramique de 5 mm disponible chez votre fournisseur. Pour commencer, tournez la molette de

automatiquement. Pour éteindre, tournez la molette de réglage sur OFF ou réglez le thermostat dessous de la température

réglage à la température désirée et réglez le thermostat au-dessus de la température ambiante, le poêle s'allumera

Input Rating: 41,120 Btu's/hr. Electrical Rating: 115 VAC, 60 Hz, Start 3.75 Amps, Run 1.88 Amps. Route

84-HUD FOR USE ONLY WITH PELLETIZED WOOD FUEL. Do not use any other type of fuel.

stove will light automatically. To shutdown, turn dial control to OFF or set thermostat below room

**BARCODE LABEL** 

Listed Solid Fuel Room Heater/Pellet Type. Also suitable for Mobile Home Installation. This appliance has been tested and listed for use in Manufactured Homes in accordance with OAR 814-23-9000 through 814-23-909.

Appareil de chauffage de combustible solide/de type de boulettes. Accepté dans l'installation dans les maisons mobiles. Cet appareil a été testé et enregistré pour l'usage dans les Maisons Mobiles en accord avec OAR 814-23-9000 jusqu'à 814-23-909

#### PREVENT HOUSE FIRES / PRÉVENTION DES FEUX DE MAISON

Install and use only in accordance with manufacturer's installation and operating instructions. Contact local building or fire officials about restrictions and inspection in your area.

WARNING - FOR MOBILE HOMES: Do not install appliance in a sleeping room. An outside combustion air inlet must be provided. The structural integrity of the mobile home floor, ceiling and walls must be maintained. Refer to manufacturer's instructions and local codes for precautions required for passing chimney through a combustible wall or ceiling. Inspect and clean vent system frequently in accordance with manufacturer's instructions. DO NOT CONNECT THIS UNIT TO A CHIMNEY SERVING ANOTHER APPLIANCE. Use a 3" or 4" diameter type "L" or "PL" venting system.

Installez et utilisez en accord avec les instructions d'installation et d'opération du fabricant. Contactez le bureau de la construction ou le bureau des incendies au sujet des restrictions et des inspections d'installation dans votre voisinage. Ne pas obstruez l'espace en dessous de l'appareil.

AVIS - Pour Les Maisons Mobiles: Ne pas installer dans une chambre à coucher. Un tuyau extérieur de combustion d'air doit être installé et ne doit pas être obstrué lorsque l'appareil est en usage. La structure intégrale du plancher, du plafond et des murs de la maison mobile doit être maintenue intacte. Référez vous aux instructions du fabricant et des codes locaux pour les précautions requises pour passer une cheminée à travers un mur ou un plafond combustibles, et les compensations maximums. Inspectez et nettoyez la cheminée fréquemment. Ne pas connecter cet appareil à une cheminée servant un autre

appareil. Utilisez systèm de ventilation "L" ou "PL" diamètre 76mm ou 102mm



USA

G

H\*

2 in G =

= 51 mm

= 51 mm

H\* = 2 in

I = 6 in

CANADA

= 152 mm

#### MINIMUM CLEARANCES TO COMBUSTIBLE MATERIALS / ESPACES LIBRES MINIMUM DES MATÉRIAUX :

- Back Wall to Appliance / Mur Arrière А
- Side Wall to Appliance Top/ Mur De Côté в
- Flue Pipe to Back Wall / Le Tuyau de fumée à l'Arrière de la Paroi С D
  - Side Wall to Corner of Appliance/ Mur De Côté

| r | H* | , |
|---|----|---|
| G |    | G |
|   |    |   |

#### FLOOR PROTECTION / PROTECTION DU SOL

Floor protector must be non-combustible material, extending beneath heater and to the front/sides/rear as indicated. Measure front distance (I) from the surface of the glass door.

Le poêle doit être placé sur une assise non combustible s'étendant tout autour de lui, comme les schémas l'indiquent. Mesurez la distance du devant (I) de la surface de la porte vitrée.

\*Non-combustible floor protection must extend 2 inches (51mm) beneath the flue pipe when installed with horizontal venting or under the Top Vent Adapter with vertical installation. RECOMMENDED IN USA; REQUIRED IN CANADA.

2 in [51 mm]

3 in [76 mm]

2 in [51 mm]

6 in [152 mm]

\*Un protecteur incombustible de plancher doit s'étendre 2 inches (51mm) sous le conduit de cheminée pour une installation de ventilation horizontale ou sous un adapteur de ventilation de dessus pour une installation verticale. RECOMMANDÉ AUX ÉTATS-UNIS: NÉCESSAIRE AU CANADA.

Manufactured by / Fabriqué par :

HEARTH&HOME 352 Mountain House Road Halifax, PA 17032

### **U.S. ENVIRONMENTAL PROTECTION AGENCY**

Certified to comply with 2020 particulate emission standards at 1.0 g/hr EPA method 28R and ASTM 2779 using premium wood pellets. This wood heater needs periodic inspection and repair for proper operation. Consult the owner's manual for further information. It is against federal regulations to operate this wood heater in a manner inconsistent with the operating instructions in the owner's manual.

> 2023 2024 2025 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

> > DO NOT REMOVE THIS LABEL / NE PAS ENLEVER L'ÉTIQUETTE

Made in Taiwan / Fabriqué en Taiwan

# Owner's Manual Operation & Care

# INSTALLER: Leave this manual with party responsible for use and operation. OWNER: Retain this manual for future reference.

Contact your dealer with questions on installation, operation, or service.



# WARNING

If the information in these instructions is not followed exactly, a fire may result causing property damage, personal injury, or death.

- Do not store or use gasoline or other flammable vapors and liquids in the vicinity of this or any other appliance.
- <u>Do not over fire</u> If appliance or chimney connector glows, you are over firing. Over firing will void your warranty.
- Comply with all minimum clearances to combustibles as specified.
- Failure to comply may cause house fire.

# WARNING



### HOT SURFACES!

Glass and other surfaces are hot during operation AND cool down.

### Hot glass will cause burns.

- Do not touch glass until it is cooled.
- NEVER allow children to touch glass.
- Keep children away.
- CAREFULLY SUPERVISE children in same room as fireplace.
- Alert children and adults to hazards of high temperatures.
- High temperatures may ignite clothing or other flammable materials.
- Keep clothing, furniture, draperies and other flammable materials away.

# CAUTION

Check building codes prior to installation.

- Installation MUST comply with local, regional, state and national codes and regulations.
- Consult local building, fire officials or authorities having jurisdiction about restrictions, installation inspection, and permits.

**NOTE:** To obtain a French translation of this manual, please contact your dealer or visit <u>www.quadrafire.com</u>

**REMARQUE** : Pour obtenir une traduction française de ce manuel, s'il vous plaît contacter votre revendeur ou visitez <u>www.quadrafire.com</u>



and Welcome to the Quadra-Fire Family!

**NOTE:** Clearances may only be reduced by means approved by the regulatory authority having jurisdiction.

### A. Sample of Serial Number / Safety Label

LOCATION: Back of Appliance



Mfg. Date

Safety Alert Key:

- DANGER! Indicates a hazardous situation which, if not avoided will result in death or serious injury.
- WARNING! Indicates a hazardous situation which, if not avoided could result in death or serious injury. ٠
- CAUTION! Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury. •
  - NOTICE: Indicates practices which may cause damage to the appliance or to property.

# **TABLE OF CONTENTS**

|   | A. Sample of Serial Number / Safety Label<br>B. Warranty Policy                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2<br>4                                                 |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|   | 1 Listing and Code Approvals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |
| • | <ul> <li>A. Appliance Safety Certification</li> <li>B. Appliance Emissions Certification</li> <li>C. BTU &amp; Efficiency Specifications.</li> <li>D. Glass Specifications.</li> <li>E. Electrical Rating</li> <li>F. Mobile Home Approved</li> <li>G. Sleeping Room</li> <li>H. California - Prop65.</li> </ul>                                                                                                                                                                                                     | 6<br>6<br>7<br>7<br>7<br>7<br>7                        |
|   | 2 Operating Instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |
|   | A. Fire Safety         B. Non-Combustible Materials         C. Combustible Materials         D. Fuel Material and Fuel Storage         E. Before Your First Fire         F. Filling the Hopper         G. General Operating Information         H. Starting Your First Fire         I. Fire Characteristics         J. Feed Rate Adjustment Instructions.         K. Ignition Cycles         L. Restarting the Appliance.         M. Clear Space.         N. Thermostat Controls         O. Thermestat Setup Optione | 8<br>8<br>9<br>9<br>0<br>0<br>10<br>11<br>11<br>2<br>2 |
|   | O. Thermostat Setup Options.       1         P. Thermostat Operation Instructions.       1         Q. Thermostat Temperature Programs.       1         R. Thermostat Other Features       1         S. Thermostat Battery Replacement       1         T. Frequently Asked Questions       1                                                                                                                                                                                                                          | 3<br>4<br>4<br>5                                       |
|   | 1. 1 requertity Askeu Questiolis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                      |

| 3 Maintenance and Service                                                                                                                                                                                                                     |                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| A. Proper Shutdown Procedure       1         B. Quick Reference Maintenance Chart.       1         C. General Maintenance and Cleaning       1         D. Soot or Creosote Fire.       2         E. High Ash Fuel Content Maintenance       2 | 17<br>17<br>18<br>22<br>22 |
| 4 Troubleshooting Guide 2                                                                                                                                                                                                                     | 23                         |
| 5 Service Parts Replacement                                                                                                                                                                                                                   |                            |
| A. Blowers       2         B. Baffles       2         C. Igniter       2         D. Glass       2                                                                                                                                             | 25<br>26<br>26<br>27       |
| 6 Reference Materials                                                                                                                                                                                                                         |                            |
| A. Component Functions       2         B. Component Locations       3         C. Service and Maintenance Log       3         D. Service Parts List       3                                                                                    | 28<br>30<br>31<br>34       |

→ = Contains updated information

### **B. Warranty Policy**

#### Hearth & Home Technologies LLC LIMITED LIFETIME WARRANTY

Hearth & Home Technologies LLC ("HHT") extends the following warranty for HHT gas, wood, pellet and electric hearth appliances (each a "Product" and collectively, the "Product(s)") and certain component parts set forth in the table below ("Component Part(s)") that are purchased from a HHT authorized dealer or distributor.

#### WARRANTY COVERAGE:

HHT warrants that the Products and their Component Parts will be free from defects in materials and workmanship for the applicable period of Warranty coverage set forth in the table below ("Warranty Period"). If a Product or Component Parts are found to be defective in materials or workmanship during the applicable Warranty Period, HHT will, at its option, repair the applicable Component Part(s), replace the applicable Component Part(s), or refund the purchase price of the applicable Product(s). The maximum amount recoverable under this Warranty is limited to the purchase price of the Product. This Warranty is transferable from the original purchaser to subsequent owners, but the Warranty Period will not be extended in duration or expanded in coverage for any such transfer. This Warranty is subject to conditions, exclusions, and limitations as described below.

#### WARRANTY PERIOD:

Warranty coverage begins at the date of installation. In the case of new home constructions, Warranty coverage begins on the date of first occupancy of the dwelling or six months after the sale of the Product(s) by an independent, authorized HHT dealer or distributor, whichever occurs earlier. However, the Warranty coverage shall commence no later than 24 months following the date of Product shipment from HHT, regardless of the installation or occupancy date.

The term "Lifetime" in the table below is defined as: 20 years from the beginning date of warranty coverage for gas appliances, and 10 years from the beginning date of warranty coverage for wood and pellet appliances. These time periods reflect the minimum expected useful lives of the designated Component Parts under normal operating conditions.

| Warranty Period     |         | HHT Manufactured Appliances and Venting |        |      |          |         |                                                                                                                                                                                      |  |  |
|---------------------|---------|-----------------------------------------|--------|------|----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Component<br>Parts  | Labor   | Gas                                     | Pellet | Wood | Electric | Venting | Component Parts Covered by this Warranty                                                                                                                                             |  |  |
| 1 Year              |         | x                                       | x      | x    |          | x       | All parts including handles, external enameled<br>components and other material except as covered by<br>Warranty Conditions, Warranty Exclusions, and<br>Warranty Limitations listed |  |  |
| 2 Years             |         |                                         |        |      | x        |         | All parts except as covered by Warranty Conditions,<br>Warranty Exclusions, and Warranty Limitations listed                                                                          |  |  |
|                     |         |                                         |        |      |          |         |                                                                                                                                                                                      |  |  |
|                     |         |                                         | х      | х    |          |         | Igniters, Auger Motors, Electronic Components, and<br>Glass                                                                                                                          |  |  |
| 2 years             |         | x                                       |        |      |          |         | Electrical components limited to modules, remotes/wall<br>switches, valves, pilots, blowers, junction boxes, wire<br>harnesses, transformers and lights (excluding light bulbs)      |  |  |
|                     |         | х                                       |        | Х    |          |         | Molded Refractory Panels, Glass Liners                                                                                                                                               |  |  |
| 3 years             |         |                                         | x      |      |          |         | Firepots, burnpots, mechanical feeders/auger<br>assemblies                                                                                                                           |  |  |
|                     |         |                                         |        |      |          |         |                                                                                                                                                                                      |  |  |
| 5 years             | 1 year  | х                                       |        |      |          |         | Vent Free Burners, Vent Free Logs                                                                                                                                                    |  |  |
|                     |         |                                         | x      | Х    |          |         | Castings, Medallions and Baffles                                                                                                                                                     |  |  |
| 6 years             | 3 years |                                         |        | x    |          |         | Catalysts                                                                                                                                                                            |  |  |
| 7 years             | 3 years |                                         | x      | x    |          |         | Manifold tubes, HHT Chimney and Terminations                                                                                                                                         |  |  |
| 10 years 1 year     |         | X                                       |        |      |          |         | Burners, logs and refractory                                                                                                                                                         |  |  |
| Limited<br>Lifetime | 3 years | x                                       | x      | x    |          |         | Firebox and heat exchanger, FlexBurn® System (engine, inner cover, access cover and fireback)                                                                                        |  |  |
| 1 Year              | None    | x                                       | x      | x    | x        | x       | All purchased replacement parts                                                                                                                                                      |  |  |
#### WARRANTY CONDITIONS:

- Because HHT cannot control the quality of any Products sold by unauthorized sellers, this Warranty only covers Products that are purchased through an HHT authorized dealer or distributor unless otherwise prohibited by law; a list of HHT authorized dealers is available on the HHT branded websites.
- This Warranty is only valid while the applicable Product remains at the site of original installation.
- This Warranty is only valid in the country in which the HHT authorized dealer or distributor that sold the applicable Product is authorized to sell applicable Product.
- Contact your installing distributor or dealer for Warranty service. If the installing dealer or distributor is unable to provide necessary parts, contact the nearest HHT authorized dealer or supplier. Additional service fees may apply if you are seeking Warranty service from a dealer other than the dealer from whom you originally purchased the applicable Product.
- No HHT consumer should bear cost of warranty service or costs incurred while servicing warranty claims (i.e., travel, gas, or mileage) when the service is performed within the terms of this Warranty. Check with your dealer or distributor in advance for any costs to you when arranging a warranty call. Travel and shipping charges for parts are not covered by this Warranty.

#### WARRANTY EXCLUSIONS:

This Warranty does not cover the following:

- Changes in surface finishes as a result of normal use. As a heating appliance, some changes in color of interior and exterior surface finishes may occur. This is not a flaw and is not covered under the Warranty.
- Damage to printed, plated, or enameled surfaces caused by fingerprints, accidents, misuse, scratches, melted items or other external sources and residues left on the plated surfaces from the use of abrasive cleaners or polishes.
- Repair or replacement of parts that are subject to normal wear and tear during the Warranty Period are not covered. These parts include: paint, wood and pellet gaskets, firebricks, grates, flame guides, batteries and the discoloration of glass.
- Minor expansion, contraction, or movement of certain parts causing noise. These conditions are normal and complaints related to this noise are not covered by this Warranty.
- Damages resulting from: (1) failure to install, operate, or maintain the applicable Product in accordance with the installation instructions, operating instructions, and listing agent identification label furnished with the applicable Product; (2) failure to install the applicable Product in accordance with local building codes; (3) shipping or improper handling; (4) improper operation, abuse, misuse, continued operation with damaged, corroded or failed components, accident, or improperly/incorrectly performed repairs; (5) environmental conditions, inadequate ventilation, negative pressure, or drafting caused by tightly sealed constructions, insufficient make-up air supply, or handling devices such as exhaust fans or forced air furnaces or other such causes; (6) use of fuels other than those specified in the operation instructions; (7) installation or use of components not supplied with the applicable Product or any other components not expressly authorized and approved by HHT; (8) modification of the applicable Product.
- Non-HHT venting components, hearth connections or other accessories used in conjunction with the applicable Product.
- Any part of a pre-existing fireplace system in which an insert or a decorative gas applicable Product is installed.
- HHT's obligation under this Warranty does not extend to the Product's capability to heat the desired space. Information is provided to assist the consumer and the dealer in selecting the proper Product for the application. Consideration must be given to the Product location and configuration, environmental conditions, insulation and air tightness of the structure.

#### This warranty is void if:

- The applicable Product has been over-fired, operated in atmospheres contaminated by chlorine, fluorine, or other damaging chemicals. Over-firing can be identified by, but not limited to, warped plates or tubes, deformation/warping of interior cast iron structure or components, rust colored cast iron, bubbling, cracking and discoloration of steel or enamel finishes.
- The applicable Product is subjected to prolonged periods of dampness or condensation.
- There is any damage to the applicable Product due to water or weather damage which is the result of, but not limited to, improper chimney or venting installation.

#### LIMITATIONS OF REMEDIES AND LIABILITY:

EXCEPT TO THE EXTENT PROVIDED BY LAW, HHT MAKES NO EXPRESS WARRANTIES OTHER THAN THE WARRANTY SPECIFIED HEREIN. The owner's exclusive remedy and HHT's sole obligation under this Warranty or in contract, tort or otherwise, shall be limited to replacement of the Component Part(s), repair of the Component Part(s), or refund of the original purchase price of the applicable Product(s), as specified above; provided, however, that (i) if HHT is unable to provide replacement of the Component Part(s) and repair of the Component Part(s) is not commercially practicable or cannot be timely made, or (ii) the customer is willing to accept a refund of the purchase price of the applicable Product(s), HHT may discharge all such obligations by refunding the purchase price of the applicable Product. In no event will HHT be liable for any incidental or consequential damages caused by defects in the applicable Product. Some States do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you. This Warranty gives you specific legal rights and you may also have other rights which vary from State to State. THE DURATION OF ANY IMPLIED WARRANTY IS LIMITED TO DURATION OF THE EXPRESSED WARRANTY SPECIFIED ABOVE FOR THE APPLICABLE PRODUCT. Some States do not allow limitations on how long an implied warranty lasts, so the above limitation may not apply to you.



## A. Appliance Safety Certification

| Model<br>Number:   | CB1200-C                                                                                                              |   |
|--------------------|-----------------------------------------------------------------------------------------------------------------------|---|
| Laboratory:        | OMNI Test Laboratories, Inc.                                                                                          | ) |
| Report<br>Number:. | 061-S-21-4                                                                                                            |   |
| Туре:              | Solid Fuel Room Appliance/Pellet Fuel Burning Type                                                                    |   |
| Standard:          | ASTM E1509-12 and ULC S627-00<br>Room Appliance Pellet Fuel Burning type<br>and (UM) 84-HUD.<br>Mobile Home Approved. |   |

## **B. Appliance Emissions Certification**

| Model<br>Number:  | CB1200I-C                    |  |
|-------------------|------------------------------|--|
| Laboratory:       | OMNI Test Laboratories, Inc. |  |
| Report<br>Number: | 0061PN013E                   |  |
| Standard:         | ASTM E2515, ASTM E2779       |  |
| Can be found at:  |                              |  |

This Classic Bay 1200 is Certified to comply with 2020 particulate emission standards.



This pellet appliance needs periodic inspection and repair for proper operation. It is against federal regulations to operate this pellet appliance in a manner inconsistent with operating instructions in this manual.

NOTICE: This installation must conform with local codes. In the absence of local codes you must comply with the ASTM E1509-12, ULC S627-00 and (UM) 84-HUD.

## C. BTU & Efficiency Specifications

| EPA Certification<br>Number:                                                                                                                                     | Number: 176-19        |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|
| EPA Certified Emissions:                                                                                                                                         | 1.0 grams per hour    |  |  |  |
| *LHV Tested Efficiency:                                                                                                                                          | 77.8%                 |  |  |  |
| **HHV Tested Efficiency:                                                                                                                                         | 72.7%                 |  |  |  |
| ***EPA BTU Output:                                                                                                                                               | 11,100 to 30,900 / hr |  |  |  |
| ****BTU Input:                                                                                                                                                   | 15,900 to 41,100 / hr |  |  |  |
| Vent Size: 3" or 4" Type "L" or "PL"                                                                                                                             |                       |  |  |  |
| Hopper Capacity: 80 lbs.                                                                                                                                         |                       |  |  |  |
| Fuel: Premium Wood Pellets                                                                                                                                       |                       |  |  |  |
| * Weighted average LHV (Low Heating Value) efficiency<br>using data collected during EPA emissions tests in<br>accordance with the requirements of CSA B415.1.   |                       |  |  |  |
| ** Weighted average HHV (High Heating Value) efficiency<br>using data collected during EPA emissions tests in<br>accordance with the requirements of CSA B415.1. |                       |  |  |  |
| *** A range of BTU outputs calculated using HHV efficiency and the burn rates from the EPA tests.                                                                |                       |  |  |  |

\*\*\*\* Based on the maximum feed rate per hour multiplied by approximately 8600 BTU's which is the average BTU's from a pound of pellets.

## **D. Glass Specifications**

This appliance is equipped with 5mm ceramic glass. Replace glass only with 5mm ceramic glass. Please contact your dealer for replacement glass.

## **E. Electrical Rating**

115 VAC, 60 Hz, Start 3.75 Amps, Run 1.88 Amps.

## F. Mobile Home Approved

- This appliance is approved for mobile home installations when not installed in a sleeping room and when an outside combustion air inlet is provided.
- The structural integrity of the mobile home floor, ceiling, and walls must be maintained.
- The appliance must be properly grounded to the frame of the mobile home and use only Listed pellet vent Class "L" or "PL" connector pipe.
- Outside Air Kit, part 811-0570 or 811-0872 must be installed in a mobile home installation.

## G. Sleeping Room

When installed in a sleeping room it is recommended that 3ft of vertical be installed prior to horizontally exiting the room and a smoke/CO alarm be installed in the bedroom. The size of the room must be at least 50ft<sup>3</sup> per 1,000 Btu/hr stove input, if the stove exceeds the room size, outside air must be installed.

## H. California - Prop65



This product and the fuels used to operate this product (wood), and the products of combustion of such fuels, can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, and carbon monoxide, which is known to the State of California to cause birth defects or other reproductive harm. For more information go to: WWW.P65Warnings.ca.gov



## Fire Risk.

Hearth & Home Technologies disclaims any responsibility for, and the warranty will be voided by, the following actions:

- Installation and use of any damaged appliance.
- Modification of the appliance.
- Installation other than as instructed by Hearth & Home Technologies.
- Installation and/or use of any component part not approved by Hearth & Home Technologies.
- Operating appliance without fully assembling all components.
- Operating appliance without legs attached (if supplied with appliance).
- Do NOT Over fire If appliance or chimney connector glows, you are over firing.
- Any such action that may cause a fire hazard.

Improper installation, adjustment, alteration, service or maintenance can cause injury or property damage.

For assistance or additional information, consult a qualified installer, service agency or your dealer.

**NOTE:** Hearth & Home Technologies, manufacturer of this appliance, reserves the right to alter its products, their specifications and/or price without notice.



## WARNING

Do not operate appliance before reading and understanding operating instructions.

Failure to operate appliance according to operating instructions could cause fire or injury.

Visit <u>www.quadrafire.com/shopping-tools/videos</u> to view product and use & care videos.

## A. Fire Safety

To provide reasonable fire safety, the following should be given serious consideration:

- Install at least one smoke detector on each floor of your home.
- Install at least one carbon monoxide detector on each floor of your home.
- Locate smoke detector away from the heating appliance and close to the sleeping areas.
- Follow the smoke detector manufacturer's placement and installation instructions and maintain regularly.
- Follow the carbon monoxide manufacturer's placement and installation instructions and maintain regularly.
- Conveniently locate a Class A fire extinguisher to contend with small fires.
- In the event of a hopper fire:
  - Evacuate the house immediately.
  - Notify fire department.

## **B. Non-Combustible Materials**

Material which will not ignite and burn, composed of any combination of the following:

- Steel
- Plaster
- Brick
- Iron
- Concrete
- Tile
- Glass
- Slate

Materials reported as passing ASTM E 136, Standard Test Method for Behavior of Metals, in a Vertical Tube Furnace of 750° C.

## **C. Combustible Materials**

Material made of/or surfaced with any of the following materials:

- Wood
- Compressed Paper
- Plant Fibers
- Plastic
- Plywood/OSB
- Sheet Rock (drywall)

<u>Any material that can ignite and burn:</u> flame proofed or not, plastered or non-plastered.

## D. Fuel Material and Fuel Storage

Pellet fuel quality can greatly fluctuate. We recommend that you buy fuel in multi-ton lots whenever possible. However, we do recommend trying various brands before purchasing multi-ton lots to ensure your satisfaction.

Hearth & Home Technologies strongly recommends only using Pellet Fuel Institute (PFI) certified fuel.

## Fuel Material

- Made from sawdust or wood by-products
- Depending on the source material it may have a high or low ash content.

## Higher Ash Content Material

- Hardwoods with a high mineral content
- Fuel that contains bark
- Standard grade pellets, high ash pellets

## Lower Ash Content Material

- Most softwoods
- · Fuels with low mineral content
- Most premium grade pellets



Do not burn fuel that contains an additive; (such as soybean oil).

- May cause hopper fires.
- Damage to product may result.

## <u>Clinkers</u>

Minerals and other non-combustible materials such as sand will turn into a hard, glass-like substance called a clinker when heated in the fire pot.

Trees from different areas will vary in mineral content. That is why some fuels produce more clinkers than others.

## <u>Moisture</u>

Always burn dry fuel. Burning fuel with high moisture content takes heat from the fuel and tends to cool the appliance, robbing heat from your home. Damp pellet fuel can clog the feed system.

## <u>Size</u>

- Pellets are either 1/4 inch or 5/16 inch (6-8mm) in diameter.
- Length should be no more that 1-1/2 inches (38mm).
- Pellet lengths can vary from lot to lot from the same manufacturer.
- Due to length variations, the flame height (feed rate) may need adjusting occasionally.

## Performance

- Higher ash content requires the ash drawer to be emptied more frequently.
- Hardwoods require more air to burn properly.
- Premium wood pellets produce the highest heat output.
- Burning pellets longer than 1-1/2 inches (38mm) can cause an inconsistent fuel feed rate and/or missed ignitions.

## **Changing to Different Fuel Type**

- Empty the hopper of the previous fuel.
- Thoroughly vacuum hopper before filling with the new fuel.

The burn rate, BTU content and heat output will all vary depending on the fuel selected.



Tested and approved for wood pellet fuel only. Burning of any other type of fuel voids your warranty.

## Storage

- Wood pellets should be left in their original sealed bag until using to prevent moisture absorption.
- Do not store any pellet fuel within the clearance requirements or in an area that would hinder routine cleaning and maintenance.

## E. Before Your First Fire

- 1. First, make sure your appliance has been properly installed and that all safety requirements have been met. Pay particular attention to the fire protection and venting.
- 2. Double check that the ash drawer and firebox are empty and the fire pot floor is fully closed.
- Check the position of the thermocouple, located above the fire pot, and make sure that it protrudes approximately 3/4 inch (19mm) into the fire pot.
- 4. Close and latch the door.



Tip of thermocouple must be in contact with the inside end of the thermocouple cover. Missed ignitions can occur.

## F. Filling the Hopper

Open the hopper lid by lifting the handle. Fill the hopper with fuel. Close the hopper lid. The unit will not feed with the hopper lid open and the fire will go out.

## G. General Operating Information

## 1. Thermostat Calls For Heat

The appliance is like most modern furnaces; when the thermostat calls for heat, your appliance will automatically light and deliver heat. When the room is up to temperature and the thermostat is satisfied, the red call light will go off and the appliance will shut down (**Figure 10.1**).

#### 2. Heat Output Controls

This appliance is equipped with a heat output control switch that has three settings or burn rates; low, medium and high. The appliance will turn on and off as the thermostat demands. When the thermostat calls for heat, the appliance will start up on the high setting for the first 4 minutes and 15 seconds, then automatically switch to the burn rate for which it is set. If the appliance is set at one of the lower settings, it will run quieter but take longer to heat up an area than if it were set at a higher burn rate. Regardless of the burn rate, when the area is warm enough to satisfy the thermostat, the appliance will shut off.

## 3. Fan Speed Switch

This switch will adjust the speed of the room distribution air fan or convection blower on all three settings. This means you have six different blower speeds available as there is a high and low on each setting.



#### Figure 10.1

## H. Starting Your First Fire

- 1. A thermostat is required for proper operation of this appliance. At this time, fill the hopper with pellets, set the thermostat to its lowest setting. Plug the power cord into nearby outlet.
- 2. The exhaust blower will stay on for approximately 10 minutes even though the thermostat is not calling for heat. This is normal.
- 3. Locate the heat output control switch mounted on the right side. Switch it to the high setting by pushing the top of the switch in, then adjust the thermostat to its highest setting. The red call light located on the upper right corner of the right side panel will be on. This indicates the thermostat is calling for heat (Figure 10.1).
- 4. The fuel feed system and the igniter should now be on.

- 5. For your first fire it will be necessary to press the reset button every two minutes until pellets start to drop into the fire pot, then press button 1 more time. This will fill the feed system and allow the appliance to begin dropping pellets. The appliance will continue to run as long as the thermostat is calling for heat.
- 6. Once the appliance has ignited, let it burn for approximately 15 minutes, then set the thermostat to the desired room temperature. Adjust the heat output control switch to the desired setting.



## I. Fire Characteristics

A properly adjusted fire with the heat output control switch set on "high" has a short active flame pattern that extends out of the fire pot approximately 4 to 6 inches (102 to 152mm). If the fire has tall flames with black tails and seems somewhat lazy, the feed rate will need to be reduced. This is done by sliding the fuel adjustment control rod down, which will reduce the feed. If the fire is not 4 to 6 inches (102 to 152mm) tall, slide the fuel adjustment control rod up to increase the feed. A medium and low setting will give a shorter flame. The flame will rise and fall somewhat. This is normal.

## J. Feed Rate Adjustment Instructions

The feed adjustment control rod is factory set, and should be adequate for most fuels. The set screw is located at the bottom of the hopper and <u>set loose at the factory</u> so the fuel adjustment control rod will slide up and down by only loosening the thumb screw at the top (**Figure 11.1**). Do not re-tighten bottom set screw.

However, if the flame height is too high or too low, you will need to adjust the feed rate. Wait until the appliance has been burning for 15 minutes before making your adjustments and allow 15 minutes for feed adjustment to take effect.

- 1. Loosen the thumb screw (Figure 11.1).
- 2. Adjust the fuel adjustment control rod upwards to increase the feed rate and flame height or downwards to decrease the feed rate and flame height.
- 3. Re-tighten the thumb screw.



Figure 11.1



## K. Ignition Cycles

- 1. At the beginning of each ignition cycle, it is normal to see some smoke in the firebox. The smoke will stop once the fire starts.
- 2. The convection blower will automatically turn on after your appliance has been burning for approximately 10 minutes. This blower transfers heat from your appliance into the room, and will continue to run after the thermostat has stopped calling for heat until the appliance has cooled down.

 Occasionally the appliance may run out of fuel and shut itself down. When this happens, the red call light will be on (See Figure 10.1 on page 10). To restart it, fill the hopper and press the reset button (Figure 10.1 on page 10). When you press the reset button the red call light will go out. Release the button and the light will come back on. You should see a fire shortly. If not, follow Starting Your First Fire on page 10.

## WARNING

## Fire Risk

- Do NOT operate appliance:
- With appliance door open.
- Fire pot floor open.
- Cleaning slide plates open.

Do NOT store fuel:

- Closer than required clearances to combustibles to appliance.
- Within space required for loading or ash removal.

## L. Restarting the Appliance

## **Restart Process**

- 1. When the unit has run out of fuel, add pellet fuel to the hopper.
- 2. Dump the ashes and clinkers built up in the fire pot by pulling the ash dump removal handle out several times. Make sure clinkers have dropped into the ash pan then return the handle to fully closed position.
- 3. Press the reset button; the appliance will then being its startup sequence.

## **Restarting After a Power Failure**

1. For an electrical disruption the appliance will start on its own without need for priming - providing the control system is asking for heat.

## M. Clear Space

**Mantel:** Avoid placing candles and other heat-sensitive objects on mantel or hearth. Heat may damage these objects.

**NOTICE:** Clearances may only be reduced by means approved by the regulatory authority having jurisdiction.



## Fire Risk.

- Do NOT operate appliance:
- With appliance door open.
- With fire pot floor open.
- With ash pan removed.





## Fire Risk.

Keep combustible materials, gasoline and other flammable vapors and liquids clear of appliance.

- Do NOT store flammable materials in the appliance's vicinity.
- DO NOT USE GASOLINE, LANTERN FUEL, KEROSENE, CHARCOAL LIGHTER FLUID OR SIMILAR LIQUIDS TO START OR "FRESHEN UP" A FIRE IN THIS APPLIANCE.
- DO NOT BURN GARBAGE OR FLAMMABLE FLUIDS SUCH AS GASOLINE, NAPHTHA OR ENGINE OIL.
- DO NOT USE CHEMICALS OR FLUIDS TO START THE FIRE.
- Keep all such liquids well away from the appliance while it is in use.
- Combustible materials may ignite.



## WARNING

**Fire Risk.** Do NOT place combustible objects in front of the appliance. High temperatures may ignite clothing, furniture or draperies. Maintain a minimum clearance of 3 feet (914mm) in front of appliance.

## N. Thermostat Controls

## **TEMPERATURE (HEAT / OFF) SWITCH:**

Set this switch to HEAT to control your appliance. The OFF position will disable the appliance.

## SET (MULTI- FUNCTION) SLIDE SWITCH:

This provides easy access to common settings, and should always remain in RUN unless items are being adjusted.

**NOTE:** When thermostat is set to "Manual" nonprogrammable mode, all positions of the SET slide switch will act like RUN.

## **UP / DOWN BUTTONS:**

The UP and DOWN buttons are used to control the set temperature, or adjust any other on-screen items. An items flashing, is the item currently being adjusted.

## HOLD BUTTON:

This button activates and deactivates the manual Temperature HOLD feature, which maintains a fixed set temperature indefinitely without following a program routine.

## **COPY BUTTON:**

This is used to copy temperature program items from one day to the next. Also used to access the menu setup.

## NEXT BUTTON:

This is used when setting items such as software options, and temperature programs when they are flashing on the screen. Pressing the NEXT button will cycle through which item is flashing.





## **O. Thermostat Setup Options**

Setup options for how the thermostat will function are performed using a menu on the display screen.

## TO ACCESS THE SETUP MENU:

Move the System Mode Switch into the OFF position, and then hold down the COPY button for approximately 5 seconds until the screen changes. The menu will always start with item #01, and is advanced to each following item by a single press of the NEXT button. The options for each item are changed using the UP or DOWN buttons.

## ITEM #01 (CLK = CLOCK FORMAT):

- 12Hr, default: This displays the clock times using standard AM and PM values.
- 24Hr: This displays the clock times using the military-time format (example 22:00 hours, without using AM or PM).

## ITEM #02 (TMP = TEMPERATURE SCALE):

- F, default: Shows all temperature values in Fahrenheit.
- C: Shows all temperature values Celsius.

## ITEM #03 (PROGRAMMING STYLE):

- 7 Day, default: This style uses a separate program routine for each of the 7 days in the week.
- 5/2 Day: This style uses a weekday program routine for Monday, Tuesday, Wednesday, Thursday, Friday, and a separate weekend program routine for Saturday and Sunday.
- Manual Non-Programmable: In this setting, there are no program routines for the thermostat to follow and the temperature control will be set only by the UP and DOWN buttons on the front panel.

#### ITEM #04 (PERD = EVENT OR PERIOD QUANTITY):

- 4P, default: Thermostat uses four Events per day (called MORN, DAY, EVE, and NITE).
- 2P: The thermostat uses two Events per day (called DAY and NITE).

**NOTE:** Event or Period Quantity feature is not accessible during Manual Non-Programmable mode.

## ITEM #07 (DLAY = DELAY TIME):

- 5, default: Thermostat waits 5 minutes before turning the system back on after it was last run. This internal delay prevents the appliance from turning on too quickly after shutting down. The 5 minute setting is fine for most applications.
- 2: Same operation as above but reduced to 2 minutes between state changes.

**NOTE**: This delay does not happen when the thermostat is manually turned up and down.

#### ITEM #08 (TEMPERATURE DIFFERENTIAL):

- The thermostat works by turning your heating system on and off whenever the room temperature varies from the desired set-point temperature.
- Use the UP/DOWN buttons to change the number value between 1 and 9. Generally your system should cycle on about 3 to 6 times per hour. A smaller differential number makes the system cycle more frequently, so the room temperature is more precise and constant. A larger differential number will make the system remain on for a longer duration each time and decreases the number of cycles per hour.
- Default is set to 4.

## P. Thermostat Operation Instructions

#### SET DAY AND TIME:

Place the SET switch into the DAY/TIME position. With the day flashing press UP or DOWN to set the day or the week. Press NEXT and the clock time will start flashing. Use UP or DOWN to set the time; verify the AM/PM indicator is correct. Return the SET switch to RUN position when finished.

#### **HEATING:**

Basic operation of the thermostat can be obtained with the SET switch in the RUN position. The temperature can be adjusted using the UP and DOWN buttons. When the thermostat is first powered on, it will follow a default temperature routine that is preset from the factory **(Table 13.1)**.

| Event | Event Time |             |
|-------|------------|-------------|
| MORN  | 6:00 AM    | 70°F (21°C) |
| DAY   | 8:00 AM    | 62°F (17°C) |
| EVE   | 6:00 PM    | 70°F (21°C) |
| NITE  | 10:00 PM   | 62°F (17°C) |

Table 13.1

## LCD DISPLAY BACKLIGHT:

The display screen is lighted to assist viewing at nighttime, or in locations with low light levels. Press any button on the front panel to activate the approximate 10 second backlight.

#### **TEMPERATURE OVERRIDE:**

While thermostat is in RUN mode, the set temperature can be temporarily changed by pressing UP or DOWN. The temporarily changed set temperature will return to the programmed value stored in memory when start time of the next upcoming scheduled event is reached (MORN, DAY, EVE, OR NITE). While the temporary changed set temperature is in effect, the word OVERRIDE will be shown on the display screen. To cancel, move TEMPERATURE switch to OFF and back to HEAT again.

#### **TEMPERATURE HOLD:**

Temperature hold is used for maintaining a fixed set temperature; once a HOLD is initiated, the thermostat will maintain the set temperature indefinitely. To enter a HOLD state, press the HOLD button one time and the word HOLD will appear on the display. To cancel, press the HOLD button once again.

## STATIC NOTICE

Thermostat is protected against normal static electric discharges, however to minimize the risk of damaging the thermostat in extremely dry weather, please touch a grounded metal object before touching the thermostat.

## **Q. Thermostat Temperature Programs**

The thermostat by default has 4 separate program events they are: MORN, DAY, EVE, and NITE. Each event ends at the start time of the following event.

**NOTE:** If the thermostat is set for 2 events a day instead of 4, the thermostat will only use the DAY and NITE events.

## SET TEMPERATURE PROGRAMS:

- 1. Move TEMPERATURE switch to HEAT.
- 2. Move SET switch to TEMP PROG position.
- 3. Starting with Monday, use the UP or DOWN buttons to adjust the start time and set temperature for the MORN event, and then press NEXT button to advance.
- 4. Adjust the start time and set temperature of the DAY event then press NEXT button.
- 5. Continue in this same manner to adjust the start time and set temperatures for the EVE and NITE events for Monday

**NOTE:** When the last event is finished for each day or group of days, the thermostat will advance forward into the next day or group of days.

- 6. Use steps 3 through 5 to set up the events for the rest of the week or group of days.
- 7. Return the SET switch back to RUN.

## **COPY PROGRAM FEATURE:**

Using similar instructions as set temperature programs the COPY button will allow a whole day of set program events to be copied to another day.

- 1. Move Temperature switch to HEAT as well as move SET switch to TEMP PROG position.
- Starting with Monday, use the UP or DOWN buttons to adjust the start time and set temperature for the MORN, DAY, EVE, and NITE events. Press the COPY button and then press the NEXT button to advance to Tuesday.
- 3. With Tuesday displayed press COPY button. As all programs events from Monday will be copied to Tuesday (this will advance automatically to the next day; Wednesday, as the word COPY will appear on the screen for one second).

4. Continue in this pressing COPY button to set desired days with original setting.

**NOTE:** The word COPY will not appear on the display for Monday, but will display each day afterwards for approximately one second and the day of the week will automatically advance forward to the next day.

## **R. Thermostat Other Features**

**NOTE:** All other features need to be completed in a timely manner as the thermostat will time out after 10 seconds.

## **TEMPERATURE CALIBRATION:**

The internal temperature sensor in this thermostat is accurately calibrated at the factory, and in most cases alterations to this setting should not be needed. The temperature calibration feature allows you to manually offset the measured temperature by as much as plus or minus 5°F (3°C) from its original value. If several thermostats are used in the same house, this feature can be used to synchronize this thermostat to the others.

Change the temperature calibration:

- 1. Move TEMPERATURE switch to OFF.
- 2. Move SET switch to RUN.
- 3. Press and hold both UP and DOWN buttons together for at least 5 seconds; the words SET and CAL will appear on the display along with a single flashing temperature digit.
- Use the UP or DOWN buttons to change the number of degrees desired for adjustment; 0° is the default value and also means no correction will be applied.
- 5. Press the NEXT button to accept the setting.

## **KEYPAD LOCKOUT:**

There is the option to lock the front panel buttons to prevent unauthorized tampering of your thermostat settings.

To Lock the Keypad:

- 1. Move TEMPERATURE switch to HEAT.
- 2. Move SET switch to RUN.
- 3. Perform a single press of each button in the following sequence:
  - NEXT, NEXT, NEXT, HOLD

A padlock will appear on the display screen.

To Unlock the Keypad:

- 1. Move TEMPERATURE switch to HEAT.
- 2. Move SET switch to RUN.
- 3. Perform a single press of each button in the following sequence:
  - NEXT, NEXT, NEXT, HOLD

A padlock will no longer be present on the display screen.

#### HARDWARE RESET:

The hardware reset button; labeled HW RST, is a small round push button that is located in the middle of the circuit board, just below the battery holder (Figure 15.1). Pressing this button will:

- Cause the LCD display screen to become fully populated
- Thermostat to perform an internal system check of its components

If the thermostat appears to be acting in an erratic manner, pressing the HW RST button may remedy this behavior. The temperature programs are not erased when a hardware reset is performed, however the clock will have to be changed to match the current day and time.



#### Figure 15.1

#### SOFTWARE RESET:

Software reset is used to erase ALL temperature events, and to return all user-adjustable software settings back to their original factory default settings.

To Perform a Software Rest:

- 1. Verify the thermostat's keypad is not locked.
- 2. Move TEMPERATURE switch to OFF.
- Press and hold the UP, DOWN, and NEXT buttons all at the same time for at least 5 seconds. When the LCD display screen will become fully populated let go of all buttons at that point the screen will return to normal.

The clock will have to be changed to match the current day and time.

## S. Thermostat Battery Replacement

This thermostat is powered by two "AA" Alkaline batteries. The batteries should be replaced AT LEAST once per year to ensure reliable operation or sooner if the LO BATT appears on the display screen. The batteries are located on the back of the thermostat's circuit board. The front portion of the thermostat can be removed from the back half by using the tabs on the top edge of the thermostat housing (**Figure 15.2**).



Figure 15.2

When installing new batteries, it is recommended using only brand new "AA" size alkaline batteries. Please verify the polarity markings shown in the battery compartment before adding batteries to the compartment. When finished, line up the front of the thermostat to the base, and firmly press together to securely latch the front and back halves together properly.

## **BATTERY GRAPHIC:**

Anytime time the batteries are physically present in the thermostat, there will be a visual indicator showing the life of the battery. This will appear on the display screen (**Figures 15.3 and Figure 15.4**).



Figure 15.3 - Full battery icon



Figure 15.4 - Low battery icon

#### CONNECT THERMOSTAT WIRES TO APPLIANCE:

There is a 4 screw terminal block located on the back lower left corner of the stove directly above the power cord inlet. The center 2 screws are for the thermostat wires (Figure 15.5).







## **T. Frequently Asked Questions**

#### What causes my glass to become dirty?

If the glass has white ash build up it is normal and the glass should be cleaned. If it is a black soot build up airflow through the unit may be restricted. The most often cause is overdue maintenance and cleaning. See **Maintaining and Service** on **page 17** and/or make adjustments to the trim control.

#### How can I get more heat out of the appliance?

The most often cause of diminished heat output is overdue maintenance and cleaning. See **Maintaining and Servicing** on page 17.

#### What should I do if I smell smoke or there is ash/soot coming from the appliance?

Seal exhaust venting system to the unit with High Temp silicone. Secure the venting system to the unit with at least (3) screws. All pellet vent pipe must be secured together either by means provided by the pipe manufacturer or by (3) screws at each joint.

In addition most homes are built very tight today and with exhaust systems can create negative pressure in the home. See **Negative Pressure** on **page 15** in the <u>installation manual</u>. For ash or soot check the above and the exhaust blower housing and seals.

#### Why would my appliance run fine last winter but not start this fall?

It is possible that the stove was not properly prepared for the Non-burn season; see **Troubleshooting Guide** on <u>page 23</u> and <u>page 24</u>.

#### Is there a place to lubricate the blowers to quiet them down?

No. The most often cause of noisy blowers is from the impellers becoming dirty over time; see **Maintenance and Service** on **page 17**.

#### What is the metal object with the bend in it that came inside the plastic bag?

It is a clean-out tool used to help clean the fire pot and remove any jams in the rare event they occur in the feed tube.

#### Why is there a black residue building up on the outside of my home?

Wind can cause this to happen. If the appliance is operating correctly very little soot should ever exit the termination cap. Check to be sure the venting is installed per the **Install Guide** starting on **page 5** of the <u>installation manual</u> and check your local codes.

#### Do I need an outside air kit?

Outside air is required for mobile home installs and in some jurisdictions. Refer to **Listing & Code Approvals** on <u>page 6</u>, **Mobile Home Installation** on **page 24** in the <u>installation manual</u> and **Appliance Set-up** on **page 20** in the <u>installation manual</u>. Also refer to local building codes.

#### I am seeing sparks coming out of my pipe (termination cap) outside is this safe?

This is normal. As long as **Clearances to Combustibles** on page 10 of the installation manual were followed this is safe.

#### I have no power to anything. Does this appliance have a circuit breaker or fuse or a reset button?

This unit has one fuse on the control board and a resettable snap disc mounted to the feed tube. If the appliance overheats then the snap disc can be reset; if the fuse is blown the control board must be replaced.

#### Where is the serial number located on this appliance?

The serial number is located on the back of the appliance.

## No pellets are dropping in my fire pot.

See Troubleshooting Guide on page 23.

Contact your dealer for additional information regarding operation and troubleshooting. Visit <u>www.quadrafire.com</u> to locate a dealer.

When properly maintained, your appliance will give you many years of trouble-free service. Contact your dealer to answer question regarding proper operation, troubleshooting and service for your appliance. Visit <u>www.quadrafire.com/owner-resources</u> to view basic troubleshooting, FAQs, use & care videos. We recommend annual service by a qualified service technician.

## A. Proper Shutdown Procedure

Turn off the thermostat.

This pellet appliance has a manufacturer-set minimum low burn rate that must not be altered. It is against federal regulations to alter this setting or otherwise operate this pellet appliance in a manner inconsistent with operating instructions in this manual.

## CAUTION

## Shock and Smoke Hazard

• Turn down thermostat, let appliance completely cool and exhaust blower must be off. Now you can unplug appliance before servicing.

- Smoke spillage into room can occur if appliance is not cool before unplugging.
- Risk of shock if appliance not unplugged before servicing appliance.

## Follow the detailed instructions found in this section for each step listed in the chart below.

## **B. Quick Reference Maintenance Chart**

| Cleaning or Inspection                   | Frequency                                                  |    | Daily | Weekly | Monthly | Yearly |
|------------------------------------------|------------------------------------------------------------|----|-------|--------|---------|--------|
| Ash Pan (Wood Pellets)                   | Every 5 bags of fuel                                       | OR |       | X      |         |        |
| Ash Removal from Firebox                 | More frequently depending on the fuel type or ash build-up | OR |       | х      |         |        |
| Beneath Heat Exchanger                   | Every 1 ton of fuel                                        | OR |       |        | Х       |        |
| Blower, Combustion (Exhaust)             | More frequently depending on the fuel type                 | OR |       |        |         | Х      |
| Blower, Convection                       | More frequently depending on<br>operating environment      | OR |       |        |         | Х      |
| Door Latch Inspection                    | Prior to heating season                                    | OR |       |        | Х       |        |
| Exhaust Path                             | More frequently depending on ash<br>build-up               | OR |       |        |         | Х      |
| Firebox - Prepare for Non-Burn<br>Season | At end of heating season                                   | OR |       |        |         | Х      |
| Fire pot - Burning pellets -<br>hardwood | Every 3 bags                                               | OR | Х     |        |         |        |
| Fire pot - Burning pellets - softwood    | Every 5 bags                                               | OR | X     |        |         |        |
| Glass                                    | When clear view of fire pot becomes obscure                | OR |       | х      |         |        |
| Heat Exchanger & Drop Tube               | Every 1 ton of fuel                                        | OR |       |        | Х       |        |
| Hopper                                   | Every 1 ton of fuel or when changing fuel types            | OR |       |        | Х       |        |
| Top Vent Adapter                         | More frequently depending on the fuel type or ash build-up | OR |       |        |         | Х      |
| Venting System                           | More frequently depending on the fuel type                 | OR |       |        |         | Х      |

**NOTICE:** These are recommendations. Clean more frequently if you encounter heavy build-up of ash at the recommended interval or you see soot coming from the vent. Not properly cleaning your appliance on a regular basis will void your warranty.

## C. General Maintenance and Cleaning

## 1. Types of Fuel

The type of fuel you are burning will dictate how often you have to clean your fire pot.

If the fuel you are burning has a high dirt or ash content, it may be necessary to clean the fire pot more than once a day.

Dirty fuel will cause clinkers to form in the firepot (Figure 18.1). A clinker is formed when dirt, ash or a non-burnable substance is heated to 2000°F (1093°C) and becomes glass-like. See High Ash Fuel Content Maintenance on page 22 for more details on different types of fuels.



#### Figure 18.1

- 2. Cleaning Fire pot with Cleaning Rod & Fire pot Scraper
- Frequency: Daily or more often as needed
- By: Homeowner
  - a. The appliance must be in complete shutdown and cool and the exhaust blower off.

**NOTE:** If you are just cleaning the fire pot, there is no need to unplug the insert.

- b. Pull fire pot cleaning rod OUT a couple of times to help shake debris loose. If rod is hard to pull, it may be necessary to use your fire pot clean-out tool to chip away material that has built up on the bottom plate of the fire pot and to push out any clinkers. Larger clinkers may have to be removed from the top of the fire pot.
- c. The fire pot floor plate must be fully closed when finished (Figure 18.2).



- The cleaning slide plates must be fully CLOSED when appliance is operating.
- Hot pellets may fall into ash pan and start a fire or mis-starts due to lack of vacuum.



#### Figure 18.2

## 3. Ash Removal from Firebox

- **Frequency:** Every 5 bags or weekly or more frequently depending on ash build-up.
- By: Homeowner
  - a. There must not be any hot ashes in the firebox during cleaning so allow the appliance to completely cool. The firebox ash should be removed every time the exhaust path is cleaned. Frequent cleaning of the ash in the firebox will help slow down the build-up of ash in the exhaust blower and vent system.
  - b. Plug in your appliance, if unplugged, and turn the thermostat on and immediately shut it off to start the exhaust blower on its cycle time. It will pull fly ash out the exhaust instead of into the room.
  - c. Open door. Remove ash with an ash vacuum or whisk broom and small dust pan.
  - d. This ash is deposited in the same ash pan as the fire pot debris. The ash pan should be emptied every time you clean the firebox. Remember to place the ash and debris into a metal or noncombustible container.
  - e. The cleaning rods must be fully closed when cleaning is complete; see **Disposal of Ashes** on **page 19**.
- 4. Cleaning Ash Pan
- Frequency: Weekly or every 5 bags of fuel
- By: Homeowner

Empty into a non-combustible container and re-install ash pan; see **Disposal of Ashes** on **page 19**.

## WARNING

## Fire Risk

The cleaning slide plates must be fully CLOSED when appliance is operating. Hot pellets may fall into ash pan and start a fire.

- 5. Disposal of Ashes
- Frequency: As needed
- By: Homeowner

Ashes should be placed in a steel container with a tightfitting lid. The container of ashes should be moved outdoors immediately and placed on a non-combustible floor or on the ground, well away from all combustible materials, pending final disposal.

If the ashes are disposed of by burial in soil or otherwise locally dispersed, they should be retained in the closed container until all cinders have thoroughly cooled. Other waste shall not be placed in this container.



## 6. Cleaning Heat Exchanger Chambers & Drop Tube

- Frequency: Monthly or every 1 ton of fuel
- By: Homeowner

The amount of ash buildup in the fire pot will be a good guide to determine how often you should clean the heat exchangers.

- a. Allow the appliance to completely cool down before pulling the cleaning rods. Turn the thermostat on and then immediately off to start the exhaust blower on its cycle time. It will pull fly ash out the exhaust instead of into the room.
- b. To access the cleaning rods lift the hopper lid. Both black bent handle pull rods are located close to the face of the appliance to the left and right side.
- c. To clean, pull the rods straight out until it stops, approximately 20 inches (508mm). Slide the rods OUT and IN a couple of times.



Figure 19.1

- 7. Cleaning Beneath Heat Exchanger
- Frequency: Monthly or after burning 1 ton of fuel
- By: Homeowner
  - a. Be sure the appliance is allowed to cool, has been unplugged and the exhaust blower is off.
  - b. A more thorough cleaning is needed to remove the excess ash that is left behind from the use of the cleaning rods for the heat exchanger tubes.
  - c. The ash will be resting on the back of the baffle. This will require removing the baffle; see **Baffles** on <u>page 26</u>.

## 8. Cleaning the Exhaust Path

- **Frequency:** Every 25 bags or monthly or more frequently depending on ash build-up.
- By: Homeowner
  - a. Be sure the appliance is allowed to cool, has been unplugged and the exhaust blower is off.
  - b. Remove access door on the right of the appliance (4 screws).
  - c. Use a small vacuum hose attachment to clean area.
  - d. Re-install and close trap door.
- 9. Cleaning the Hopper
- **Frequency:** Monthly or after burning 50 bags of fuel or when changing fuel type
- By: Homeowner

After burning approximately 1 ton of fuel or changing fuels you will need to clean the hopper to prevent sawdust build-up.

A combination of sawdust and pellets on the auger reduces the amount of fuel supply to the fire pot. This can result in nuisance shutdowns and mis-starts.

- a. Be sure the appliance is allowed to cool, has been unplugged and the exhaust blower is off.
- b. Empty the hopper of any remaining pellets.
- c. Vacuum the hopper and feed tube.

**NOTE:** Hearth & Home Technologies recommends to use a heavy duty vacuum cleaners specifically designed for solid fuel appliance cleaning.

- 10. Soot and Fly Ash: Formation & Need for Removal in Exhaust Venting System.
- Frequency: Yearly or more frequently depending on ash build-up.
- By: Qualified Service Technician/Homeowner

Be sure the appliance is allowed to cool, has been unplugged and the exhaust blower is off.

The products of combustion will contain small particles of fly ash. The fly ash will collect in the exhaust venting system and restrict the flow of the flue gases.

At start-up if there is incomplete combustion, or if there is a shutdown or incorrect operation of the appliance it will lead to some soot formation. This will collect in the exhaust venting system.

The venting system may need to be cleaned at least once a year or more often depending upon the quality of your fuel or if there is a lot of horizontal pipe sections. Ash will build up more quickly in the horizontal sections.

- 11. Cleaning the Glass
- Frequency: When clear view of the fire pot becomes obscure
- By: Homeowner
  - a. Appliance must be completely before cool cleaning glass.
  - b. Vacuum fly ash from glass and door rope.
  - Use a damp paper towel or any non-abrasive glass С cleaner. Wipe off with dry towel.



Handle glass assembly with care.

## When cleaning glass:

- Avoid striking, scratching or slamming glass.
- Do NOT clean glass when hot.
- Do NOT use abrasive cleaners.
- Use a hard water deposit glass cleaner on white film.
- Refer to maintenance instructions.



- Handle glass doors with care.
- Inspect the gasket to ensure is undamaged.
- Do NOT strike, slam or scratch glass.
- Do NOT operate appliance with glass door removed, cracked, broken or scratched.

- 12. Door Latch Inspection
- Frequency: Prior to heating season
- By: Homeowner
  - a. Be sure the appliance is allowed to cool, has been unplugged and the exhaust blower is off.
  - b. To adjust, open the latch and pivot the holding rod out. Loosen the jam nut on the rod.
  - c. With a Phillips head screw driver, turn the rod clockwise to tighten. The latch handle should snap securely in place when adjusted properly.
  - d. After adjusting the latch, be sure to tighten the jam nut on the rod to hold the adjustment.

## 13. Cleaning Exhaust Blower - Requires No Lubrication

- ٠ Frequency: Yearly or as needed
- By: Qualified Service Technician
- Task: Contact your local dealer
- 14. Cleaning Convection Blower Requires **No Lubrication**
- Frequency: Yearly or as needed
- By: Qualified Service Technician
- Task: Contact your local dealer.

## 15. Cleaning the Top Vent Adapter

- a. The appliance must be in complete shutdown and the exhaust blower should be off. Allow the appliance to completely cool down.
- b. Open the clean-out cover (Figure 20.1).
- Sweep out any ash build-up. C.

NOTE: There are heavy duty vacuum cleaners specifically designed for solid fuel appliance cleaning.



Figure 20.1

it

#### 16. Preparing Firebox for Non-Burn Season

- Frequency: Yearly at the end of the heating season
- By: Homeowner
  - a. Be sure the appliance is allowed to cool, has been unplugged and the exhaust blower is off.
  - b. Remove all ash from the firebox and vacuum thoroughly.
  - c. Paint all exposed steel, including cast-iron.
    - Use the Touch-Up paint supplied with the appliance; or;
    - Purchase paint from your local dealer.
    - Must use a high-temperature paint made specifically for heating appliances.

#### 17. Door Gasket Inspection

- Frequency: Prior to heating season
- By: Homeowner
  - a. Be sure the appliance is allowed to cool, has been unplugged and the exhaust blower is off.
  - b. To inspect the door rope (gasket), open the door and see that the door rope extends approximately 1/8 inch (3mm) to 3/16 inch (9.5mm) from the door rope channel.
  - c. It should show signs of compaction all the way around the door where the rope contacts the face of the appliance. Confirm there are no air leaks.
- 18. Vacuum Heat Exchanger Tubes, Firebox Area and Drop Tube
  - a. Use a Shop Vac to vacuum any fly ash and soot from the heat exchanger tubes and firebox area (Figure 21.1).
  - b. Remove any debris that may be in the drop tube.



Figure 21.1

#### 19. Clean Exhaust Exit Behind the Exhaust Blower

- a. Open both the upper and lower right side panels (Figure 21.2).
- b. Using a Phillips head screwdriver remove the 4 screws from the clean-out plate and set aside (Figure 21.2).
- c. Use a small vacuum hose attachment to clean area (Figure 21.3).
- d. Re-attach clean-out plate and close side panels.



Figure 21.2



Figure 21.3

## **D. Soot or Creosote Fire**

Establish a routine for the fuel, wood burner and firing technique. Check daily for creosote build-up until experience shows how often you need to clean to be safe. Be aware that the hotter the fire the less creosote is deposited, and weekly cleaning may be necessary in the mild weather even though monthly cleaning may be enough in the coldest months. Contact your local municipal or provincial fire authority for information on how to handle a chimney fire.

In the event of a soot or creosote fire, close the firebox door, exit the building immediately and contact the proper fire authorities.

DO NOT under any circumstances re-enter the building.

## E. High Ash Fuel Content Maintenance

- Frequency: As needed
- By: Homeowner

Poor quality pellet fuel, or lack of maintenance, can create conditions that make the fire pot fill quickly with ashes and clinkers.

This condition makes the appliance susceptible to overfilling the fire pot with pellets which may result in smoking, sooting and possible hopper fires. **Figure 22.1** shows an example where the fire pot overfills, pellets back up into the feed tube and ash has accumulated in the firebox.

An inefficient and non-economical method of burning of fuel caused by poor quality pellet fuel is shown in **Figure 22.2**.

The correct flame size when good quality, premium pellet fuel is burned is shown in **Figure 22.3**.

If the ash buildup exceeds the half way point in the fire pot **IMMEDIATE ATTENTION AND CLEANING IS REQUIRED.** 



Figure 22.1



Figure 22.2



Figure 22.3

## Troubleshooting Guide

With proper installation, operation, and maintenance your appliance will provide years of trouble-free service. If you do experience a problem, this troubleshooting guide will assist a qualified service person in the diagnosis of a problem and the corrective action to be taken. This troubleshooting guide can only be used by a qualified service technician.

| Symptom                           | Possible Cause                                                        | Corrective Action                                                                                    |
|-----------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Plug in appliance -               | No current to outlet.                                                 | Check circuit breaker at service panel.                                                              |
| No response.                      | 7 amp tuse detective.<br>#3 span disc tripped or defective            | Replace fuse.<br>Reset or replace span disc                                                          |
|                                   | Control box defective.                                                | Replace control box.                                                                                 |
| Call light on. No fire.           | Out of fuel.                                                          | Check hopper. Fill with fuel.                                                                        |
| No fuel in fire pot.              | #2 snap disc may be defective.                                        | Replace snap disc.                                                                                   |
|                                   | Vacuum switch not closing, no vacuum.                                 | Check exhaust blower is plugged in                                                                   |
|                                   |                                                                       | Check vacuum switch is plugged in.                                                                   |
|                                   |                                                                       | Check vacuum hose is in good condition, clear                                                        |
|                                   |                                                                       | and connected at both ends.                                                                          |
|                                   |                                                                       | check inermocouple is in good condition and plugged in properly                                      |
|                                   |                                                                       | Make sure venting system is clean.                                                                   |
|                                   |                                                                       | Make sure front door is closed.                                                                      |
| O-Winhton No fine                 | Control box defective.                                                | Replace control box.                                                                                 |
| Partially burned fuel in fire pot | Fire pot clean-out plate not closed.                                  | Clean fire pot Make sure there is no clinker                                                         |
|                                   |                                                                       | in the fire pot; see <b>Cleaning Fire pot with</b>                                                   |
|                                   |                                                                       | Cleaning Rod & Fire pot Scraper on page 18.                                                          |
|                                   |                                                                       | clinkers may have to be broken up with fire pot clean-out tool or other means.                       |
| Call light on. No fire.           | Fire pot clean-out plate not closed.                                  | Check that fire pot clean-out plate is fully closed.                                                 |
| Unburned pellets in fire pot.     | Fire pot is dirty.                                                    | Clean fire pot. Make sure there is not a clinker                                                     |
|                                   |                                                                       | In the fire pot. Clinkers may have to be pushed                                                      |
|                                   |                                                                       | means.                                                                                               |
|                                   | The ignition hole between the igniter bracket and fire                | Scrape with solid piece of wire.                                                                     |
|                                   | laniter not working.                                                  | Remove ash drawer to see if igniter is glowing                                                       |
|                                   |                                                                       | red on start-up.                                                                                     |
|                                   |                                                                       | Check igniter wires for good connection.                                                             |
|                                   |                                                                       | female spade connectors.                                                                             |
|                                   | Control box defective.                                                | Replace control box.                                                                                 |
| Slow or smoky start-up.           | Fire pot clean-out plate not closed.                                  | Check that fire pot clean-out is fully closed.                                                       |
|                                   | Fire pot is dirty.                                                    | Clean fire pot. Make sure there is not a clinker<br>in the fire pot. Clinkers may have to pushed out |
|                                   |                                                                       | of fire pot with fire pot clean-out tool or other                                                    |
|                                   |                                                                       | means.                                                                                               |
|                                   | Excessive amount of fuel at start-up.                                 | Reduce feed rate using feed rate adjustment                                                          |
|                                   | Dirty exhaust and/or venting system.                                  | Check for ash build up in appliance, including                                                       |
|                                   |                                                                       | behind rear panels, firebox, heat exchanger,                                                         |
|                                   |                                                                       | exhaust blower and venting.                                                                          |
| not begin start sequence.         | Snap Disc #3 tripped.                                                 | Adjust thermostat above room temperature.<br>Reset snap disc                                         |
|                                   | No power.                                                             | Connect to power.                                                                                    |
|                                   | Fuse blown.                                                           | Replace fuse.                                                                                        |
|                                   | Connections at thermostat and/or appliance not making proper contact. | Check connections at thermostat and appliance.                                                       |
|                                   | Defective thermostat or thermostat wiring.                            | Replace thermostat or wiring.                                                                        |
|                                   |                                                                       | NOTE: To test thermostat and wiring, use                                                             |
|                                   |                                                                       | a jumper wire at the thermostat block on the                                                         |
|                                   | Control box defective.                                                | Replace control box.                                                                                 |

| Symptom                                                                                               | Possible Cause                                                                                                                                                        | Corrective Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Feed system fails to start.                                                                           | Out of fuel.<br>#2 snap disc may be defective.<br>Vacuum switch not closing. No vacuum.<br>Feed system jammed or blocked.<br>Feed spring not turning with feed motor. | Check hopper, fill with fuel.<br>Replace snap disc. Firebox door must be closed securely.<br>Check exhaust blower is plugged in and operating.<br>Check vacuum switch is plugged in. Check vacuum hose is in<br>good condition, clear and connected at both ends.<br>Check thermocouple is in good condition and plugged<br>in properly.<br>Make sure venting system is clean.<br>NOTE: High winds blowing into the venting system can<br>pressurize the firebox causing loss of vacuum.<br>Empty hopper of fuel. Use a wet/dry vacuum cleaner to remove<br>remaining fuel, from hopper, including feed tube.<br>Check feed chute for obstructions.<br>Loosen 2 screws and jiggle feed assembly.<br>Check that set screw is tight on feed spring shaft at end of feed<br>motor. |
|                                                                                                       | Feed motor defective or not plugged in.                                                                                                                               | Check connections on feed motor, replace if defective.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Appliance fails to shut off.                                                                          | Call light on.                                                                                                                                                        | Turn thermostat off.<br>If call light does not go out, disconnect thermostat wires<br>from appliance. If call light does go out, thermostat or wires<br>are defective.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Convection blower fails to start                                                                      | #1 snap disc defective.<br>Blower not plugged in.<br>Blower is defective.<br>Control box is defective.                                                                | Replace snap disc.<br>Check that blower is plugged into wire harness.<br>Replace blower.<br>Replace control box.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Exhaust blower fails to start or does not shut off.                                                   | Blower not plugged in.<br>Blower is clogged with ash.<br>Blower is defective.<br>Control box is defective.                                                            | Check that blower is plugged into wire harness.<br>Clean exhaust system.<br>Replace blower.<br>Replace control box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Large, lazy flame, orange<br>color. Black ash on glass.                                               | Dirty appliance.<br>Poor fuel quality, high ash content.<br>Fire pot clean-out plate not                                                                              | Clean appliance, including fire pot, heat exchangers and<br>venting system. Remove stainless steel baffle from firebox to<br>clean ash from on top of baffle. Clean behind rear brick panels.<br>Change fuel brand to premium.<br>Check that fire pot clean-out plate is fully closed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                       | Excessive amount of fuel.                                                                                                                                             | Reduce feed rate using feed rate adjustment control rod located inside hopper.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Nuisance shutdowns.                                                                                   | Low flame.<br>Sawdust buildup in hopper.<br>Feed motor is reversing.<br>Defective thermocouple.<br>Defective control box.<br>Fire pot more than 1/2 full.             | Increase feed by opening feed rate adjustment control rod<br>located inside hopper.<br>Clean hopper, see <b>Cleaning The Hopper</b> on <u>page 19</u> .<br>Check for good connections between feed motor and<br>wire harness.<br>Replace thermocouple.<br>Replace control box.<br>See <b>High Ash Fuel Content Management</b> on <u>page 22</u>                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Appliance calls for heat.<br>Call light illuminates.<br>Exhaust blower starts.<br>No feed or igniter. | Thermocouple is defective or not properly plugged in.                                                                                                                 | Check connections on thermocouple or replace if defective.<br>A flashing yellow light on the control box indicates a problem<br>with the thermocouple.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Honner lid not closed all                                                                             | Delective control box                                                                                                                                                 | Replace control box.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| the way                                                                                               | (auger will not function)                                                                                                                                             | or magnet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

## A. Blowers

1. Exhaust Blower - PART NUMBER: 812-3381

#### Remove existing blower:

- a. Use proper shut down procedures to shut down the appliance and let it completely cool and then unplug it.
- b. Use an 11/32" wrench or nut driver to loosen and remove the (6) nuts holding motor mount plate to the blower housing on your appliance.
- c. Remove washer from beneath the terminal ring on the grounding wire.
- d. Pull motor/mounting plate from blower housing.
- e. Scrape off old gasket material from blower housing.

## Install new blower:

- a. The blower and blower housing is shipped as an assembly. It is necessary to separate them at this point if you are using the existing blower housing already installed on the appliance.
- b. Follow steps 2 and 3 above. Discard or set aside the new blower housing.
- c. Carefully remove gasket from new housing and set onto the blower housing.

## Re-install blower to blower housing:

- a. Install blower on housing ensuring that wiring exits facing the 8 o'clock position. Place the washer and then the grounding wire on nearest mounting plate stud.
- b. Use nuts removed in **Step b of Remove existing blower** to secure blower to housing.
- c. Re-connect wiring (use jumper wire if necessary). Reconnect power supply.



Do NOT route cord under or in front of appliance.

## 2. Convection Blower - PART NUMBER: 812-3370

- a. Use proper shut down procedures to shut down the appliance and let it completely cool.
- b. The convection blower is located at the bottom rear of the appliance. If an outside air kit is also installed, depending on your particular installation you may or may not have to remove the outside air flange. If you do, remove the 2 screws using a Phillips head screwdriver. You do not need to remove the flex pipe from the flange.
- c. Remove the lower rear screen by removing the 4 screws securing the screen to the appliance.
- d. The motor is mounted on a removable bracket. Remove the 2 screws just above the motor and the whole assembly will tilt down and pull out.
- e. Disconnect the wires from the blower. The wires coming from the wiring harness are white, red and tan and the wires coming from the blower are black, white and red. The white connects to white, the red to red and black to the tan color wire.



Figure 25.2

## B. Baffles

## PART NUMBERS: LEFT BAFFLE: 510-5350, RIGHT BAFFLE: 510-5360

- 1. Use proper shut down procedures to shut down the appliance and let it completely cool down.
- 2. Open right side panel and then open the door.
- 3. The 2 baffles are located at the top inside of firebox.
- 4. Place your hand on the baffle and slide it up and the bottom edge will fall down and then you can lift the baffle out. Repeat for the other side.
  - a. Remove Baffle to Access Heat Exchanger Tubes and Firebox Exhaust Exits
    - i. Open the upper right side panel door and then open the glass door.
    - ii. The 2 baffles are located at the top inside of firebox.
    - iii. Place your hand on the baffle and slide it up and the bottom edge will fall down and then you can lift the baffle out. Repeat for the other side.
    - iv. Re-install in reverse order.

## C. Igniter

## PART NUMBER: SRV7000-462

- 1. Use proper shut down procedures to shut down the appliance and let it completely cool down and then unplug it and remove the ash drawer.
- Follow instructions to remove the ash pan found on page 18 - Cleaning Ash Pan. Remove the access plate directly above it by removing the 2 screws just below the ash catcher.
- 3. The wire leads to the igniter are connected to the wire harness with 1/4 inch male / female spade connectors. These wires will pull forward approximately 4 to 5 inches (102mm to 127mm). Disconnect the spade connections and remove the igniter from the chamber. Loosen the thumb screw and slide igniter out.
- 4. Install new igniter into the chamber and tighten the thumb screw. Re-connect the wires to the 2 leads with the spade connectors.
- 5. Remove right side panel and pull wire leads back toward the rear of the appliance to take-up the 4 to 5 inches (102mm to 107mm) previously pulled out. This will keep the wires out of the way of the ash drawer. Double check that the igniter wires are clear of any movement, i.e. ash drawer, fire pot cleaning rod, etc.
- 6. Re-install the ash drawer and side panel and re-connect the power.



## Figure 26.1

# CAUTION Shock Risk. Do NOT remove grounding prong from plug. Plug directly into properly grounded 3 prong receptacle. Route cord away from appliance. Do NOT route cord under or in front of appliance.

<sup>94</sup> 7027-802M



Alternate material may shatter and cause injury.

## PART NUMBERS:

#### LEFT OR RIGHT SIDE GLASS: 510-5400

#### CENTER BAFFLE: 510-5410

- Remove door from appliance and place face down on a protected surface to avoid scratching the door.
- Remove all door rope.

NOTE: DO NOT LET Air Wash Spacers fall down from top frame when removing and replacing center glass.

## 1. Center Glass

- a. Be sure the appliance is allowed to cool, has been unplugged and the exhaust blower is off.
- b. Using a nut driver remove the (5) bottom nuts and remove the bottom glass frame (Figure 27.1).
- c. Slightly bend up and out of the way the 2 center posts and slide the glass out the bottom.
- d. Slide new glass in, reposition the 2 center posts and re-install bottom glass frame.
- e. Re-rope the door.



Figure 27.1

## 2. Side Glass

**NOTE:** When removing the side glass with the door latch, you must remove the door latch first before removing the side frame. Use a powered Phillips head screw driver to remove the 4 screws.

- a. Be sure the appliance is allowed to cool, has been unplugged and the exhaust blower is off.
- b. Remove side glass frame.
- c. Loosen the top and bottom frame and slightly bend up and out of the way.
- d. Slide glass out the side and slide new glass in.
- e. Re-install the side glass frame and tighten the top and bottom frames.
- f. Re-install the door latch, if applicable, and re-rope the door.



Figure 27.2



- Refer to maintenance instructions.

## **A. Component Functions**

## 1. Control Box

- a. The control box is located under a small cover in the right rear corner of the inside of the hopper.
- b. There is a light located inside of the control box. The internal light will turn green when the appliance has reached a temperature of 200°F (93°C) in the fire pot and will turn red when it reaches 600°F (315°C).
- c. There is also an internal blue light located in the upper left corner of the control box. When you plug in the appliance the blue light will automatically start blinking 1 blink every 10 seconds for the first 60 seconds and then will stop.

**NOTE:** Do NOT open the control box. This will void the warranty. If you need to plug in or remove the control box you must first unplug the appliance.

## 2. Convection Blower

The convection blower is mounted at the bottom rear of the appliance. There are 2 impellers, one on each side of the motor. The convection blower pushes heated air through the heat exchange system into the room.

#### 3. Combustion (Exhaust) Blower

The combustion blower is mounted on the lower left side on rear of appliance. The blower is designed to pull the exhaust from the appliance and push it out through the venting system.

#### 4. Feed System

The feed system is located in the hopper under the feed motor cover box on the left side of the appliance and can be removed as an entire assembly. The assembly includes the feed motor, mounting bracket, bearing and feed spring (auger). The hollow feed spring (auger) pulls pellets up the feed tube from the hopper area and drops them down the feed chute into the fire pot.

#### 5. Fire pot

The fire pot is made of high quality ductile iron and has a cleaning pull-out rod. The floor of the fire pot opens for cleaning when you pull out the rod. Be sure that the floor returns to a completely closed position or your appliance will not operate properly.

## 6. Fuse

The fuse is located on the front of the junction box on the right side of the appliance. The fuse will blow should a short occur and shut off power to the appliance.



When describing the location of a component, it is always AS YOU FACE THE FRONT OF THE APPLIANCE.

## 7. Heat Exchangers

The heat exchangers transfer hot air from the exhaust system into convection air. Lift the appliance top to access the heat exchangers. There are 2 clean out rods located under the heat exchangers.

## 8. Heat Output Switch

The heat output switch is located on the upper right side panel. The function of the heat output switch is to regulate the burn rates; low, medium, and high settings.

## 9. Hopper Switch

The hopper switch is located in the upper right hand corner of the hopper. This switch is designed to shut down the feed motor whenever the hopper lid is opened.

#### 10. Igniter

The igniter is mounted on the base of the fire pot. Combustion air travels over the red hot igniter creating super heated air that ignites the pellets.

## 11. Junction Box And Wiring Harness

The junction box is located on the right side of the appliance, behind the interior shield. The junction box and wiring harness are replaced as one component.

#### 12. Power Supply

The power outlet is located on the back of the appliance, lower right corner. Check the wall receptacle for 120 volt, 60 Hz (standard current). Make sure the outlet is grounded and has the correct polarity. A good surge protector is recommended.

#### 13. Red Call Light

The red call light is on the front of the junction box, next to the reset button. The function of the red call light is to indicate that the thermostat is calling for heat.

#### 14. Reset Button

The reset button is located on the right side of the appliance next to the red call light. The function of the button is to momentarily open the thermostat circuit, which restarts the system.

#### 15. Thermocouple

The thermocouple is located on top of the fire pot inside the thermocouple cover (ceramic protection tube). The thermocouple sends a millivolt signal to the control box indicating the preset temperatures of the green and red lights have been obtained.

## 16. Thermostat

The appliance is designed to run on a 12 volt AC thermostat. The heat anticipator should be set on the lowest setting available.

## 17. Snap Disc #1 (Convection Blower) 145°F

Snap disc #1 is located on the right side of the appliance on the top of the heat exchanger box. There are 2 purple wires connected to it. This snap disc turns the convection blower on and off as needed. Power is always present at snap disc #1.

## 18. Snap Disc #2 (Thermostat Override) 200°F

Snap disc #2 is also located on the right side of the appliance between snap disc #1 and convection blower. There are 2 yellow wires connected to it. This snap disc will turn off the feed system, which will turn off the appliance if an over fire condition should occur or if the convection blower should fail to operate.

## 19. Snap Disc #3 (Back Burn Protector) 250°F

Snap disc #3 is mounted on the side of the auger tube just below the feed motor and has a red reset button. To access it remove the feed motor cover box from inside the hopper. If the fire tries to burn back into the feed system or push exhaust up the feed tube, this snap disc will shut the entire system off. This disc must be manually reset.

## 20. Vacuum Switch

The vacuum switch is located on the left side of the appliance behind the inner shield. This switch turns the feed system on when vacuum is present in the firebox. The vacuum switch is a safety device to shut off the feed motor if the exhaust or the heat exchanger system is dirty or plugged or if the firebox door is open.

#### 21. Wiring Harness

See Figure 29.1 below.





## **B.** Component Locations



Figure 30.1



Figure 30.3



Figure 30.2



Figure 30.4

## C. Service and Maintenance Log

| Date of Service | Performed By | Description of Service |
|-----------------|--------------|------------------------|
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |

| Date of Service | Performed By | Description of Service |
|-----------------|--------------|------------------------|
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |

| Date of Service | Performed By | Description of Service |
|-----------------|--------------|------------------------|
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |
|                 |              |                        |



**Classic Bay Freestanding Pellet Stove** 

## CB1200-C

Beginning Manufacturing Date:March 2019 Ending Manufacturing Date: Active



**QUADRA-FIRE**<sup>\*</sup> Service Parts</sup>

## СВ1200-С

Beginning Manufacturing Date:March 2019 Ending Manufacturing Date: Active

| IMPORTANT: THIS IS DATED INFORMATION. Parts must be ordered from a dealer or distributor. Hearth and Home Technologies does not sell directly to consumers. Provide model number and serial number when requesting service parts from your dealer or distributor. |                                              |                           |                |   |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------|----------------|---|--|--|
| ITEM                                                                                                                                                                                                                                                              | DESCRIPTION                                  | COMMENTS                  | PART NUMBER    |   |  |  |
| 1                                                                                                                                                                                                                                                                 | Top Assembly                                 | with Hopper Lid           | SRV7027-039    |   |  |  |
| 1.1                                                                                                                                                                                                                                                               | Hopper Lid Assembly                          |                           | SRV7027-036    |   |  |  |
|                                                                                                                                                                                                                                                                   | Hopper Lid                                   |                           | SRV410-4901    |   |  |  |
| 1.2                                                                                                                                                                                                                                                               | Handle, Hopper Lid                           |                           | SRV200-0110    |   |  |  |
|                                                                                                                                                                                                                                                                   | Bushing, Hopper Lid                          | Pkg of 2                  | 812-1010       |   |  |  |
|                                                                                                                                                                                                                                                                   | Magnet, Round                                |                           | SRV7000-140    | Y |  |  |
|                                                                                                                                                                                                                                                                   | Bumper, Rubber                               | Pkg of 12                 | SRV224-0340/12 | Y |  |  |
|                                                                                                                                                                                                                                                                   | Screw, Flat Head Philips 8-32X1/2            | Pkg of 12                 | 220-0490/12    | Y |  |  |
|                                                                                                                                                                                                                                                                   | Hopper Lid Magnetic Switch                   |                           | SRV7000-375    | Y |  |  |
| 2                                                                                                                                                                                                                                                                 | Baffle Assembly Left                         |                           | 510-5350       |   |  |  |
| 3                                                                                                                                                                                                                                                                 | Baffle Assembly Right                        |                           | 510-5360       |   |  |  |
| 4                                                                                                                                                                                                                                                                 | Hinge Plate                                  |                           | 812-4030       |   |  |  |
|                                                                                                                                                                                                                                                                   | Hinge, Door, Male                            |                           | SRV450-2810    |   |  |  |
|                                                                                                                                                                                                                                                                   | Screw, Pan Head Phillips 10-32 X 3/8         | Pkg of 40                 | 21799A/40      | Y |  |  |
| 5                                                                                                                                                                                                                                                                 | Curtain Mount, Side Left                     |                           | 410-5251       |   |  |  |
| 6                                                                                                                                                                                                                                                                 | Curtain, Side Left                           |                           | 812-3840       |   |  |  |
| 7                                                                                                                                                                                                                                                                 | Curtain, Pedestal Side                       | Right or Left             | 410-5391       |   |  |  |
| 8                                                                                                                                                                                                                                                                 | Casting, Exhaust Transition                  |                           | 180-0190       |   |  |  |
| 9                                                                                                                                                                                                                                                                 | Exhaust Combustion Blower, 80 CFM            |                           | 812-3381       | Y |  |  |
|                                                                                                                                                                                                                                                                   |                                              | Motor & Housing           | 812-4710       | Y |  |  |
|                                                                                                                                                                                                                                                                   | Oralist Estruct Orachustica Discuss, haturas | Motor & Housing Pkg of 12 | SRV240-0980M   | Y |  |  |
|                                                                                                                                                                                                                                                                   | Gaskei, Exhausi Compusiton Blower, between   | Housing & Stove           | SRV240-0812    | Y |  |  |
|                                                                                                                                                                                                                                                                   |                                              | Motor & Housing Pkg of 12 | SRV240-0812M   | Y |  |  |
|                                                                                                                                                                                                                                                                   | Silicone, Hi-Temp, 11 oz.                    |                           | 812-2020       | Y |  |  |
| #10 Rod/Linkage 10.3                                                                                                                                                                                                                                              |                                              |                           |                |   |  |  |
| 10                                                                                                                                                                                                                                                                | Rod/Linkage, Ez Clean                        |                           | 812-3850       |   |  |  |
| 10.1                                                                                                                                                                                                                                                              | Knob, Ash Dump Control Rod                   |                           | 832-3020       |   |  |  |
| 10.2                                                                                                                                                                                                                                                              | Spring, Firepot                              |                           | 200-2050       |   |  |  |
| 10.3                                                                                                                                                                                                                                                              | Washer 5/16                                  | Pkg of 10                 | 7000-579/10    | Y |  |  |
| 10.0                                                                                                                                                                                                                                                              |                                              | Pkg of 50                 | 3-30-0205-50   | Y |  |  |

Additional service part numbers appear on following page.

# **QUADRA-FIRE**<sup>®</sup> Service Parts

## СВ1200-С

#### Beginning Manufacturing Date:March 2019 Ending Manufacturing Date: Active

IMPORTANT: THIS IS DATED INFORMATION. Parts must be ordered from a dealer or distributor. Hearth and Home Technologies does not sell directly to consumers. Provide Stocked model number and serial number when requesting service parts from your dealer or distributor. at Depot DESCRIPTION ITEM COMMENTS PART NUMBER **#11 Firepot Assembly** 11.1 11.2 Υ 11 **Firepot Assembly** 812-3351 Pkg of 25 226-0090/25 Υ Nut, Lock 1/4-20 Pkg of 50 3-30-8021-50 Υ Bushing, Firepot 410-8320 Υ 414-0290 Floor, Firepot Υ Υ Gasket, Firepot SRV510-0530 SRV7000-462 Y Pkg of 1 11.1 Heating Element Assembly 18" (Loop Igniter) Pkg of 10 SRV7000-462/10 Υ Υ Wing Thumb Screw 8-32 X 1/2 Pkg of 24 7000-223/24 11.2 Combustion Plenum Trap Door 812-4100 Qty: 1 812-1322 Υ 12 Thermocouple Cover Υ Pkg of 10 812-4920 13 Thermocouple 812-0210 Υ 13.1 Thermocouple Bracket W/Set Screw 812-3171 Υ #14 Door Assembly 14.5 14.1-->® 14.3 **▲** 14.2 14 Door Assembly Black DR-CB12-MBK-B 14.1 Hinge, Female SRV450-2910 14.2 Glass Assembly, Center - 13-7/8" W x 11" H SRV510-5400 Υ 14.3 Glass Assembly, Side, 1 Pc - 5-1/8" W x 11" H Interchangeable SRV510-5410 Υ 14.4 Glass Retainer Assembly SRV510-5460 Nut, Keps Lock, 8-32 Pkg of 40 226-0060/40 Υ 14.5 Bracket, Door Latch SRV410-4912 Υ Door Rope, 7/8", Field Cut to Size 842-2350 8 Ft. 10 Ft. 833-0660 Gasket, Glass, Field Cut to Size

Additional service part numbers appear on following page.

# **QUADRA - FIRE**<sup>®</sup> Service Parts

IMPORTANT: THIS IS DATED INFORMATION. Parts must be ordered from a dealer or

## СВ1200-С

Beginning Manufacturing Date:March 2019 Ending Manufacturing Date: Active

SRV7000-122

SRV7000-040

812-0380/10

812-0401

812-3500

812-3910

410-5413

Pkg of 10

Heat Output

| distributor. <b>Hearth and Home Technologies does not sell directly to consumers</b> . Provide model number and serial number when requesting service parts from your dealer or distributor. |                                        |           |                 |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------|-----------------|---|
| ITEM                                                                                                                                                                                         | DESCRIPTION                            | COMMENTS  | PART NUMBER     |   |
| 15                                                                                                                                                                                           | Ashpan                                 |           | 812-4050        |   |
|                                                                                                                                                                                              | Gasket, 7/16"                          | 10 Ft     | 844-6730        | Y |
|                                                                                                                                                                                              | Logo, Quadra-Fire                      |           | 7000-649/10     |   |
|                                                                                                                                                                                              | Silicone, Hi Temp, 11oz                |           | 812-2020        |   |
| 16                                                                                                                                                                                           | Panel, Front Access                    |           | 410-5161        |   |
| 17                                                                                                                                                                                           | Door Exhaust Plenum Cleanout Plate     | Qty 2 req | 410-4871        |   |
| 18                                                                                                                                                                                           | Latch, Magnetic (Small & Large)        |           | 812-3821        |   |
|                                                                                                                                                                                              | Latch, Magnet                          |           | SRV229-0631     | Y |
|                                                                                                                                                                                              | Screw, 8-32 x 1/4                      | Pkg of 40 | 225-0240/40     | Y |
| 19                                                                                                                                                                                           | Mount, Side Curtain, Right             |           | 410-5261        |   |
| 20                                                                                                                                                                                           | Curtain, Side Right                    |           | 812-3800        |   |
| 21                                                                                                                                                                                           | Latch, Draw                            | Qty 6 req | 229-0640        | Y |
| 22                                                                                                                                                                                           | Snap Disc, Convection Blower ( #1 )    |           | SRV230-0060     | Y |
| 23                                                                                                                                                                                           | Convection Blower, 130/60 CFM          |           | 812-3370        | Y |
|                                                                                                                                                                                              | Nut, Keps Lock, 8-32                   | Pkg of 40 | 226-0060/40     | Y |
|                                                                                                                                                                                              | Screw, Pan Head Philips 8-32 X 3/4     | Pkg of 24 | 229-1100/24     | Y |
| 24                                                                                                                                                                                           | Snap Disc, 200 Open/40 D <b>( #2 )</b> |           | SRV230-0900     | Y |
|                                                                                                                                                                                              | Bracket, Snap Disc                     |           | SRV7005-253     |   |
| 25                                                                                                                                                                                           | Director, Air, Large                   |           | 410-8250        |   |
| 26                                                                                                                                                                                           | Director, Air, Small                   |           | 410-8260        |   |
| 27                                                                                                                                                                                           | Grille, Louver                         | Black     | LVGRL-CB12-BK-B |   |
|                                                                                                                                                                                              | Grille, Bar, Bottom                    |           | 410-8330        |   |
|                                                                                                                                                                                              | Screw, Pan Head Phillips 10-32 X 3/8   | Pkg of 40 | 225-0500/40     | Y |
| 28                                                                                                                                                                                           | Extension, Heat Shield Top             |           | 410-5322        |   |
|                                                                                                                                                                                              | Screw, Pan Head Phillips 10-32 X 3/8   | Pkg of 40 | 225-0500/40     | Y |
| 29                                                                                                                                                                                           | Panel, Feed Motor Access               |           | 410-6220        |   |
| 30                                                                                                                                                                                           | Wire Harness, Junction box             |           | SRV7000-154     | Y |
|                                                                                                                                                                                              | Block, Thermostat Term Dv              |           | SRV230-0690     |   |
|                                                                                                                                                                                              | Igniter Extension                      |           | 7000-218        |   |

Call Light, Fluorescent - New Style Junction Box

Fuse, Amp 7, Junction Box

**Reset Button Assembly** 

Rocker Switch, 3-Position

Panel, Rear Access, Bottom

Switch, Rocker (Fan Speed)

Additional service part numbers appear on following page.

Fuse Holder

Υ

Υ

Υ

31

# **QUADRA-FIRE**<sup>\*</sup> Service Parts

## СВ1200-С

Beginning Manufacturing Date:March 2019 Ending Manufacturing Date: Active

| IMPORTANT: THIS IS DATED INFORMATION. Parts must be ordered from a dealer or distributor. <b>Hearth and Home Technologies does not sell directly to consumers</b> . Provide model number and serial number when requesting service parts from your dealer or distributor. |                                       |              |             |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|-------------|-----|
| ITEM                                                                                                                                                                                                                                                                      | DESCRIPTION                           | COMMENTS     | PART NUMBER |     |
| 32                                                                                                                                                                                                                                                                        | Deflector, Air, Right Curtain         |              | 410-5105    |     |
| 33                                                                                                                                                                                                                                                                        | Snap Disc, Manual Reset <b>( #3 )</b> |              | SRV230-1290 | Y   |
| 34                                                                                                                                                                                                                                                                        | Panel, Rear Access, Top               |              | 410-4352    |     |
| 35                                                                                                                                                                                                                                                                        | Vacuum Switch                         |              | SRV7000-531 | Y   |
|                                                                                                                                                                                                                                                                           | Hose, Vacuum, 5/32                    | Qty 3 ft req | SRV240-0450 | Y   |
|                                                                                                                                                                                                                                                                           | Hose, Barb Assembly                   |              | SRV229-0920 |     |
| 36                                                                                                                                                                                                                                                                        | Control Board 3 Speed                 |              | SRV7000-704 | Y   |
|                                                                                                                                                                                                                                                                           | Fuse, 8 Amp, Control Box              | Pkg of 10    | 812-3780/10 | Y   |
| 37                                                                                                                                                                                                                                                                        | Cover, Control Box                    |              | 410-6321    |     |
| 38                                                                                                                                                                                                                                                                        | Feed Adjustment Plate                 |              | 812-4170    |     |
| 39                                                                                                                                                                                                                                                                        | Cover, Feed Motor                     |              | SRV7027-071 |     |
|                                                                                                                                                                                                                                                                           |                                       |              | 9 9 9<br>9  | N v |
| 40                                                                                                                                                                                                                                                                        | Feed Motor Assembly                   | 40.0         | 812-3690    | Y   |
| 40.1                                                                                                                                                                                                                                                                      | Screw, 8-32 X 3/8 PH                  | Pkg of 40    | 225-0500/40 | Y   |
| 40.2                                                                                                                                                                                                                                                                      | Feed Motor                            |              | 812-4421    | Y   |
| 40.3                                                                                                                                                                                                                                                                      | Collar, Set, 7/8                      |              | 229-0520    |     |
| 40.4                                                                                                                                                                                                                                                                      | Feed Bearing                          |              | SRV7000-598 | Y   |
| 40.5                                                                                                                                                                                                                                                                      | Mount, Feed Motor                     |              | 410-7172    |     |
| 40.6                                                                                                                                                                                                                                                                      | Gasket, Feed Motor                    |              | SRV240-0731 | Y   |
| 40.7                                                                                                                                                                                                                                                                      | Feed Spring Assembly                  |              | SRV7027-024 | Y   |
| 40.8                                                                                                                                                                                                                                                                      | Screw, 5/16-18 X 1/4                  | Pkg of 25    | 225-0550/25 | Y   |
| 41                                                                                                                                                                                                                                                                        | Deflector, Air, Left Curtain          |              | 410-4992    |     |
|                                                                                                                                                                                                                                                                           | Component Pack                        |              | SRV7127-017 |     |
|                                                                                                                                                                                                                                                                           | Cleanout Tool                         |              | SRV414-1140 | Y   |
|                                                                                                                                                                                                                                                                           | Harness, Thermostat Wire              |              | 230-0810    |     |
|                                                                                                                                                                                                                                                                           | Paint Touch-Up, 4 oz                  |              | 812-0910    |     |
|                                                                                                                                                                                                                                                                           | Power Cord                            |              | 812-1180    | Y   |
|                                                                                                                                                                                                                                                                           | Thermostat, Programmable              |              | PROG-STAT   |     |

Additional service part numbers appear on following page.

# **QUADRA-FIRE**<sup>®</sup> Service Parts

## СВ1200-С

Beginning Manufacturing Date:March 2019 Ending Manufacturing Date: Active

IMPORTANT: THIS IS DATED INFORMATION. Parts must be ordered from a dealer or distributor. **Hearth and Home Technologies does not sell directly to consumers**. Provide model number and serial number when requesting service parts from your dealer or distributor.



| ITEM        | DESCRIPTION                                  | COMMENTS            | PART NUMBER    |   |  |
|-------------|----------------------------------------------|---------------------|----------------|---|--|
| ACCESSORIES |                                              |                     |                |   |  |
|             | Collar, Offset, Top Vent                     |                     | 812-3570       |   |  |
|             | Damper, 3 Inch - Tall Vertical Installs Only |                     | PEL-DAMP3      | Y |  |
|             | Damper, 4 Inch - Tall Vertical Installs Only |                     | PEL-DAMP4      |   |  |
|             | Heat Exchange Repair Kit                     |                     | 812-4970       |   |  |
|             | Log Set                                      |                     | 811-0592       |   |  |
|             | Outside Air Kit, Floor                       |                     | 811-0570       |   |  |
|             | Outside Air Kit, Rear                        |                     | 811-0872       |   |  |
|             | Channel, Air Intake                          |                     | SRV413-7040    |   |  |
|             | Cover, Outside Air Kit, Floor                |                     | SRV411-1071    |   |  |
|             | Hose, Alum Flex, 2 Inch x 3 Ft               | Qty. 3 Ft. Req.     | SRV200-0860    |   |  |
|             | Outside Air Cap Assembly                     |                     | SRV7001-044    |   |  |
|             | Outside Air Collar Assembly                  |                     | SRV7001-045    |   |  |
|             | Trim Plate, Outside Air Kit                  |                     | SRV412-7100    |   |  |
|             | Smart-Batt II                                | No longer available | SMARTBATT-B    |   |  |
|             | Smart-Stat II                                |                     | SMART-STAT-HHT |   |  |
|             | Top Vent Adapter                             |                     | TPVNT-1        |   |  |
|             | Gasket Clean Out Top Flue                    |                     | SRV411-1130    |   |  |
|             | Vent Adapter, 90, W/Cleanout                 |                     | TPVNT-6        |   |  |
|             | Vent Adapter, Rear                           |                     | 811-0620       |   |  |
|             |                                              |                     |                |   |  |
|             |                                              |                     |                |   |  |
|             |                                              |                     |                |   |  |
|             |                                              |                     |                |   |  |
|             |                                              |                     |                |   |  |
|             |                                              |                     |                |   |  |
|             |                                              |                     |                |   |  |
|             |                                              |                     |                |   |  |
|             |                                              |                     |                |   |  |
|             |                                              |                     |                |   |  |
|             |                                              |                     |                |   |  |
|             |                                              |                     |                |   |  |
|             |                                              |                     |                |   |  |
|             |                                              |                     |                |   |  |
|             |                                              |                     |                |   |  |
|             |                                              |                     |                |   |  |
|             |                                              |                     |                |   |  |
|             |                                              |                     |                |   |  |
|             |                                              |                     |                |   |  |



## **CONTACT INFORMATION**

Hearth & Home Technologies 352 Mountain House Road Halifax, PA 17032 Division of HNI INDUSTRIES

## Please contact your Quadra-Fire dealer with any questions or concerns. For the number of your nearest Quadra-Fire dealer log onto www.quadrafire.com







## DO NOT DISCARD THIS MANUAL

Important operating • and maintenance instructions included.

- Read, understand and follow these instructions for safe installation and operation.
- Leave this manual with party responsible for use and operation of this appliance.

## We recommend that you record the following pertinent information for your heating appliance.

Date purchased/installed:

Serial Number:

Dealership purchased from:

Location on appliance: Dealer Phone: 1(

\_

Notes:

This product may be covered by one or more of the following patents: (United States) 5341794, 5263471, 6688302, 7216645, 7047962

or other U.S. and foreign patents pending.



7027-802M
# **Appendix B – Dilution Tunnel Schematic**



**Example of ASTM E2515-11 Dilution Tunnel** 

Prior to testing, sample point and travers point locations are verified to ensure placement is within specifications. Collection hood, tunnel diameter, and mixing section length are also verified to be within specifications.

# Appendix C – Corrected Data

(Calculations with negative filter weight(s) taken as zero)

## ASTM E2779 / ASTM E2515 Emissions Results

Manufacturer: Hearth & Home Model: Classic Bay 1200-C Project No.: 0061PS013E Tracking No.: 2325 Run: 1 Technician Signature:

- Corrected -

| Integrated Test Run                 |           |
|-------------------------------------|-----------|
| Particulate Emission Rate           | 1.03 g/hr |
| Total Particulate Emissions - $E_T$ | 6.19 g    |
| Emissisons Factor                   | 0.94 g/kg |
| CSA B415 Efficiency                 | 71.0% HHV |
|                                     |           |

| First Hour Emissions                         |           |
|----------------------------------------------|-----------|
| Particulate Emission Rate                    | 1.30 g/hr |
| Total Particulate Emissions - E <sub>T</sub> | 1.30 g    |
| Emissisons Factor                            | 0.61 g/kg |

| Burn Rate (Composite)                       | 1.10 kg/hr dry    |               |
|---------------------------------------------|-------------------|---------------|
| Burn Rate (High)                            | 2.13 kg/hr dry    |               |
| Burn Rate (Medium)                          | 1.00 kg/hr dry    | 47.0% Of High |
| Burn Rate (Low)                             | 0.82 kg/hr dry    | 38.7% Of High |
|                                             |                   |               |
| Average Tunnel Temperature                  | 96 degrees F      |               |
| Avg.Velocity in Dilution Tunnel - $v_s$     | 27.42 ft/second   |               |
| Avg.Flow Rate in Dilution Tunnel - $Q_{sd}$ | 17238.7 dscf/hour |               |
|                                             |                   |               |
| Average Δp                                  | 0.172 inches H20  |               |
| Average ∆H                                  | 1.98 inches H20   |               |
| Total Time of Test                          | 360 minutes       |               |
|                                             |                   |               |

Control No. P-SFDK-0004, Effective Date 9/26/2018

## ASTM E2779 / ASTM E2515 Emissions Results

- Corrected -

| Manufacturer: | Hearth & Home      |                       |
|---------------|--------------------|-----------------------|
| Model:        | Classic Bay 1200-C |                       |
| Project No.:  | 0061PS013E         |                       |
| Tracking No.: | 2325               |                       |
| Run:          | 1                  | Technician Signature: |
| Test Date:    | 10/30/18           |                       |

|                                              | 1 <sup>st</sup> Hour | Sample Train 1 | Sample Train 2 | Sample | Unit               |
|----------------------------------------------|----------------------|----------------|----------------|--------|--------------------|
|                                              |                      |                |                |        | c. 3               |
| Total Sample Volume - V <sub>m</sub>         | 9.849                | 59.449         | 63.778         |        | ft                 |
| Average Gas Meter Temperature                | 75.95                | 75.95          | 75.35          |        | °F                 |
| Sample Volume (Std. Conditions) - $V_{mstd}$ | 9.307                | 56.175         | 59.333         |        | dsf <sup>3</sup>   |
|                                              |                      |                |                | N/A    |                    |
| Total Particulates - m <sub>n</sub>          | 0.7                  | 3.6            | 3.3            |        | mg                 |
| Particulate Concentration - $C_r/C_s$        | 7.522E-05            | 6.41E-05       | 5.56E-05       |        | g/dsf <sup>3</sup> |
| Total Particulate Emissions - $E_T$          | 1.30                 | 6.63           | 5.75           |        | g                  |
| Particulate Emission Rate                    | 1.30                 | 1.10           | 0.96           |        | g/hr               |
| Emissisons Factor                            | 0.61                 | 1.00           | 0.87           |        | g/kg               |
|                                              |                      |                |                |        |                    |
| Delta from Avg. Particulate Emissions        |                      | 0.44           | 0.44           |        | g                  |
|                                              |                      |                | •              |        | *                  |

| Quality Checks         |    |                             |            |
|------------------------|----|-----------------------------|------------|
| Filter Temps < 90 °F   | OK | Ambient Temp (55-90°F)      | OK         |
| Filter Face Velocity   | OK | Negative Probe Weight       | OK         |
| Leakage Rate           | OK | Pro-Rate Variation          | OK         |
| Medium Burn Rate < 50% | ОК | Dual Train Comparison (% g/ | 'hr) 7.07% |
|                        |    | Dual Train Comparison (g/k  | (g) 0.44   |

### - Corrected -

## Pellet Heater Lab Data - ASTM E2779 / ASTM E2515

| Manufacturer: | Hearth & Home   | Equipment Numbers:    |
|---------------|-----------------|-----------------------|
| Model:        | Classic Bay 120 | 0-C                   |
| Tracking No.: | 2325            |                       |
| Project No.:  | 0061PS013E      |                       |
| Run #:        | 1               | Technician Signature: |
| Date:         | 10/30/18        |                       |

#### TRAIN 1 (First Hour emissions)

| Sample Component       | Reagent | Filter, Probe                       | Mass Readings |           |                 |
|------------------------|---------|-------------------------------------|---------------|-----------|-----------------|
|                        |         | or Seal #                           | Tare, mg      | Final, mg | Particulate, mg |
| A. Front filter catch  | Filter  | D573                                | 113.8         | 114.5     | 0.7             |
| B. Rear filter catch   | Filter  |                                     |               |           | 0.0             |
| C. Probe catch*        | Probe   |                                     |               |           | 0.0             |
| D. Filter seals catch* | Seals   |                                     |               |           | 0.0             |
|                        | ·       | 1 <sup>st</sup> hour Sub-Total, mg: |               | 0.7       |                 |

#### TRAIN 1 (Remainder of Test)

| Sample Component       | Reagent | Filter, Probe | Mass Readings |                   |                 |
|------------------------|---------|---------------|---------------|-------------------|-----------------|
|                        |         | or Seal #     | Tare, mg      | Final, mg         | Particulate, mg |
| A. Front filter catch  | Filter  | D577          | 120.1         | 122.1             | 2.0             |
| B. Rear filter catch   | Filter  | D574          | 111.9         | 111.7             | 0.0             |
| C. Probe catch*        | Probe   | 2             | 115015.5      | 115015.6          | 0.1             |
| D. Filter seals catch* | Seals   | R669          | 3516.3        | 3517.1            | 0.8             |
|                        |         |               | Remainde      | er Sub-Total, mg: | 2.9             |
|                        |         |               | Train '       | 1 Aggregate, mg:  | 3.6             |

#### TRAIN 2

| Sample Component       | Reagent | Filter, Probe | Mass Readings |                |                 |
|------------------------|---------|---------------|---------------|----------------|-----------------|
|                        |         | or Seal #     | Tare, mg      | Final, mg      | Particulate, mg |
| A. Front filter catch  | Filter  | D575          | 113.5         | 116.3          | 2.8             |
| B. Rear filter catch   | Filter  | D576          | 120.3         | 120.3          | 0.0             |
| C. Probe catch*        | Probe   | OES3          | 114768.8      | 114768.8       | 0.0             |
| D. Filter seals catch* | Seals   | R670          | 3573.2        | 3573.7         | 0.5             |
|                        |         |               | Train 2       | Aggregate, mg: | 3.3             |

#### AMBIENT

| Sample Component       | Reagent | Filter, Probe            |          |           |                 |
|------------------------|---------|--------------------------|----------|-----------|-----------------|
|                        |         | or Seal #                | Tare, mg | Final, mg | Particulate, mg |
| A. Front filter catch* | Filter  |                          |          |           | 0.0             |
|                        |         | Ambient Aggregate, mg: 0 |          | 0.0       |                 |

\*Particulate catch that results in a negative number, is assumed to be zero for probes and seals, negative numbers for filters are assumed to be included in O-ring seal weights.

Control No. P-SFDK-0004, Effective Date 9/26/2018

Control #:

Test

Run:

1

0061PS013E

(Btu/h) (lb/h)

## CSA B415.1 Results - Overall & By Category

| Manufacturer:              | : Hearth & Home                                    |           |         |  |  |
|----------------------------|----------------------------------------------------|-----------|---------|--|--|
| Model:                     | Classic Bay 1200-C                                 |           |         |  |  |
| Date:                      | 10/30/18                                           | 10/30/18  |         |  |  |
| Test Results in Accordance | Test Results in Accordance with CSA B415.1-09 - Ov |           |         |  |  |
|                            | HHV Basis                                          | LHV Basis |         |  |  |
| Overall Efficiency         | 71.0%                                              | 76.3%     |         |  |  |
| Combustion Efficiency      | <b>99.5</b> %                                      | 99.5%     | -       |  |  |
| Heat Transfer Efficiency   | 71%                                                | 76.7%     |         |  |  |
| Output Rate (kJ/h)         | 14,959                                             | 14,190    | (Btu/h) |  |  |
| Burn Rate (kg/h)           | 1.10                                               | 2.43      | (lb/h)  |  |  |
| Input (kJ/h)               | 21,057                                             | 19,975    | (Btu/h) |  |  |
|                            |                                                    |           | r       |  |  |
| Test Load Weight (dry kg)  | 6.61                                               | 14.57     | dry lb  |  |  |
| MC wet (%)                 | 5.98                                               |           |         |  |  |
| MC dry (%)                 | 6.36                                               |           |         |  |  |
| Particulate (g )           | 6.19                                               |           |         |  |  |
| CO (g)                     | 2                                                  |           |         |  |  |
| Test Duration (h)          | 6.00                                               |           |         |  |  |
| Emissions                  | Particulate                                        | CO        | ]       |  |  |
| g/MJ Output                | 0.07                                               | 0.02      |         |  |  |
| g/kg Dry Fuel              | 0.94                                               | 0.27      |         |  |  |
| g/h                        | 1.03                                               | 0.30      |         |  |  |
| lb/MM Btu Output           | 0.16                                               | 0.05      | ]       |  |  |
|                            |                                                    |           |         |  |  |
| Air/Fuel Ratio (A/F)       | 49.88                                              |           |         |  |  |

| Test Results in Accordance with CSA B415.1-09 - Medium |               |                       |         |
|--------------------------------------------------------|---------------|-----------------------|---------|
|                                                        | HHV Basis     | LHV Basis             |         |
| Overall Efficiency                                     | 68.3%         | 99.5%                 |         |
| Combustion Efficiency                                  | <b>99.5</b> % | 73.7%                 |         |
| Heat Transfer Efficiency                               | <b>69</b> %   | 73.7%                 |         |
| Output Rate (kJ/h)                                     | 13,074        | 12,402                | (Btu/h) |
| Burn Rate (kg/h)                                       | 1.00          | 2.21                  | (lb/h)  |
| Input (kJ/h)                                           | 19,155        | 18,171                | (Btu/h) |
|                                                        |               |                       |         |
| Test Load Weight (dry kg)                              | 2.00          | 4.42                  | dry lb  |
| MC wet (%)                                             | 5.98          |                       |         |
| MC dry (%)                                             | 6.36          |                       |         |
| Particulate (g )                                       | -             |                       |         |
| CO (g)                                                 | 0             |                       |         |
| Test Duration (h)                                      | 2.00          |                       |         |
| Emissions                                              | Particulate   | CO                    |         |
| g/MJ Output                                            | -             | 0.00                  |         |
| g/kg Dry Fuel                                          | -             | 0.00                  |         |
| g/h                                                    | -             | 0.00                  |         |
| lb/MM Btu Output                                       | -             | 0.00                  |         |
|                                                        |               |                       |         |
| Air/Fuel Ratio (A/F)                                   | 50.13         |                       |         |
| VERSION:                                               | 2.2           | <del>12/14/2009</del> |         |

| Test Duration: 360                                      |               |               |         |  |
|---------------------------------------------------------|---------------|---------------|---------|--|
| Fest Results in Accordance with CSA B415.1-09 - Maximum |               |               |         |  |
|                                                         | HHV Basis     | LHV Basis     |         |  |
| Overall Efficiency                                      | 73.5%         | <b>78.9</b> % |         |  |
| Combustion Efficiency                                   | <b>99.5</b> % | <b>99.5</b> % |         |  |
| Heat Transfer Efficiency                                | 74%           | 79.3%         |         |  |
|                                                         |               |               |         |  |
| Output Rate (kJ/h)                                      | 29,943        | 28,405        | (Btu/h) |  |
| Burn Rate (kg/h)                                        | 2.13          | 4.70          | (lb/h)  |  |

| Input (kJ/h)              | 40,756      | 38,662 | (Btu/h |
|---------------------------|-------------|--------|--------|
|                           |             |        |        |
| Test Load Weight (dry kg) | 2.13        | 4.70   | dry lb |
| MC wet (%)                | 5.98        |        |        |
| MC dry (%)                | 6.36        |        |        |
| Particulate (g )          | 0.70        |        |        |
| CO (g)                    | 2           |        |        |
| Test Duration (h)         | 1.00        |        |        |
| Emissions                 | Particulate | CO     | ]      |
| g/MJ Output               | 0.02        | 0.06   |        |
| g/kg Dry Fuel             | 0.33        | 0.84   |        |
| g/h                       | 0.70        | 1.80   |        |
| lb/MM Btu Output          | 0.05        | 0.14   |        |
|                           |             |        | _      |
| Air/Fuel Ratio (A/F)      | 25.90       |        |        |
|                           |             |        |        |

| Test Results in Accordance | Test Results in Accordance with CSA B415.1-09 - Minimum |                |         |  |
|----------------------------|---------------------------------------------------------|----------------|---------|--|
|                            | HHV Basis                                               | LHV Basis      |         |  |
| Overall Efficiency         | 67.7%                                                   | <b>99.5</b> %  |         |  |
| Combustion Efficiency      | 99.5%                                                   | 73.1%          |         |  |
| Heat Transfer Efficiency   | 68%                                                     | 73.1%          |         |  |
| Output Rate (kJ/h)         | 10,677                                                  | 10,128 (Btu/h) |         |  |
| Burn Rate (kg/h)           | 0.82                                                    | 1.82           | (lb/h)  |  |
| Input (kJ/h)               | 15,759                                                  | 14,949         | (Btu/h) |  |
|                            |                                                         |                |         |  |
| Test Load Weight (dry kg)  | 2.47                                                    | 5.45           | dry lb  |  |
| MC wet (%)                 | 5.98                                                    |                |         |  |
| MC dry (%)                 | 6.36                                                    |                |         |  |
| Particulate (g )           | -                                                       |                |         |  |
| CO (g)                     | 0                                                       |                |         |  |
| Test Duration (h)          | 3.00                                                    |                |         |  |
| Emissions                  | Darticulato                                             | <u> </u>       |         |  |
| EIIIISSIOIIS               | Particulate                                             |                |         |  |
| g/MJ Output                | -                                                       | 0.00           |         |  |
| g/kg Dry Fuel              | -                                                       | 0.00           |         |  |
| g/h                        | -                                                       | 0.00           |         |  |
| lb/MM Btu Output           | -                                                       | 0.00           |         |  |
|                            |                                                         |                |         |  |
| Air/Fuel Ratio (A/F)       | 68.99                                                   |                |         |  |

#### Modified to fit this Format

File - Classsic Bay 1200-C Run 1 Corrected, Tab - Integrated Report

# **Appendix D – Revision History**

| Date       | Project No.                     | Tech. &<br>Evaluator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Report<br>Sect.                                                                                       | Summary of Changes                                                                                          |
|------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 12/19/2018 | 0061PS013E<br>(Edition 000)     | Bruce Davis<br>Ken Morgan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALL                                                                                                   | First Issue of Report                                                                                       |
| 01/15/2019 | 0061PS013E<br>(Edition 001-002) | Bruce Davis<br>Ken Morgan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALL                                                                                                   | Minor changes were done to the report<br>including HHV values, and year of the<br>report was edited.        |
|            |                                 | PrefaceEdition 003 of report was er<br>address deficiencies found bCover<br>Page 2Updated with revision infor<br>datesPage 3Updated signatoriesPage 3Updated Table of ContentsPage 3Updated Table of ContentsSection 1"Corrected" and "Uncorrect<br>Emission values added to Ta<br>Page 5.Results summary was modit<br>clarify that the run(s) were a<br>and valid. Page 7Ken MorganSection 2Ken MorganUpdated Emissions Results<br>explicitly indicate dual-train<br>values.Section 3.2Added subsequent calibration<br>certificate for OMNI equipm<br>number 650 Barometer.<br>Pages 34 and 35.Appendix AReplaced with New owner's<br>Removal of alternate fuels a<br>warranty information. PageAppendix BAppendix created to add dil<br>tunnel schematic. Page 109.Appendix CAppendix C<br>(Negative filter weights take<br>Page 111.Appendix DAppendix Created - Revisio<br>(This appendix) | Preface                                                                                               | Edition 003 of report was created to address deficiencies found by EPA                                      |
|            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cover<br>Page 2                                                                                       | Updated with revision information and dates                                                                 |
|            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | Updated signatories                                                                                         |
|            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page 3                                                                                                | Updated Table of Contents                                                                                   |
| 11/27/2023 | 0061PS013E<br>(Edition 003)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Section 1                                                                                             | "Corrected" and "Uncorrected"<br>Emission values added to Table 1,<br>Page 5.                               |
|            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | Results summary was modified to<br>clarify that the run(s) were appropriate<br>and valid. Page 7            |
|            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Section 2                                                                                             | Updated Emissions Results to<br>explicitly indicate dual-train precision<br>values.<br>Page 15.             |
|            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Section 3.2                                                                                           | Added subsequent calibration<br>certificate for OMNI equipment<br>number 650 Barometer.<br>Pages 34 and 35. |
|            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Replaced with New owner's manual:<br>Removal of alternate fuels and<br>warranty information. Page 67. |                                                                                                             |
|            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Appendix B                                                                                            | Appendix created to add dilution tunnel schematic. Page 109.                                                |
|            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Appendix C                                                                                            | Appendix created - "Corrected" data.<br>(Negative filter weights taken as zero)<br>Page 111.                |
|            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Appendix D                                                                                            | Appendix Created - Revision History<br>(This appendix)                                                      |
| 02/07/2024 | 0061PS013E<br>(Edition 004)     | Riley Tiegs<br>Ken Morgan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Appendix A                                                                                            | New label added to report                                                                                   |
| 02/26/2024 | 0061PS013E<br>(Edition 005)     | Ken Morgan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cover                                                                                                 | Changed original Report Date from<br>January 15, 2019 to December 19,<br>2018.                              |